
Premier Issue!
March, 1990
Vol. 1, No. 1

Welcome to
our birth!

In this issue:

The Publisher's Pen, Ross W Lambert 3

Filtering Out the RiffRaff, Steve Stephenson 5

Insecticide 5

Getting a Jolt From Your Joystick, David Gauger II 1 0

A Trans Warp GS CDEV, Herb Hrowal 18

Squirreling Data into Auxmem, Ross W. Lambert 28

The Illusion of Motion, Steven Lepisto 33

Them's the BRKs, Jeny Kindall 42

Hired Guns . 46

Purchase Slide-On battery (iPboto-Copyalblie)
kits from your local _ _
dealer, distributor, user's
group, or direct from Nite
Owl.
School Purchase Orders
are welcome.
Order your IIGS a spare
today!

Telephone:
(913) 362-9898

Quantity • Pricing

FAX: Add $2.00 I Order
(913) 362-5798 Overseas add $5.00

New kit restores your Apple lias
and

saves you the hassle and expense
of normal solder type batteries.

If you purchased an Apple IIGS computer before August
1989 (512K model), a Lithium battery was soldered onto the
computer board at the factory and the internal clock started
ticking. It is just a matter of time until the battery runs out of juice
and your computer forgets what day it is and any special settings
you have selected in the Control Panel.

If the software you are running uses the date and time to
keep track of records you could be in for real trouble when the
clock runs out. The IIGS is also known to lose disk drives along
with numerous other side effects caused by a dead battery.

Before the introduction of Nite Owl's Slide-On battery, the
normal method for replacing the IIGS battery was to pack your
computer up and take ~ to your local Apple dealer. The service
department would solder on a new one and charge you a small
fee, usually between $40 and $80. That was very inconvenient,
time consuming, and expensive for the typical computer owner.

Slide-On battery replacement is not much more difficult
than changing a light bulb. Using wire cutters , scissors, or nail
clippers, the old battery is removed leaving the original wires still
soldered to the mother board. The new Slide-On battery has
special terminals which have been designed to fit onto the old
battery wires . It usually takes only a couple of minutes.
Complete, easy-to-follow instructions are included w~h every k~.

Typically, our customers have reported that the original
equipment batteries have an average life expectancy of 2 to 3
years. This is about half as long as they were supposed to last.
Slide-On replacement kits include Heavy Duty batteries which
should provide for a longer battery service life.

We highly recommend that every IIGS owner keep a spare
battery on hand, ready for when the inevitable battery failure
occurs. These Lithium batteries have a shelf life of over 10 years .
The Slide-On kits come w~h a full90 day satisfaction guarantee.

Ship to:

-----------------l f- Nite Owl Productions 1 1------..l..-=--....,....--------4----+------1

1 Slide-0 n Battery Dept. A 1 L----,--....,...,...--,-..,....-...,.........,.-----t-~~rl------l
I 5734 Lamar Avenue I
I Mission, KS 66202 1

l ______ _1JSA _________ J ~~-------------:--...L---....&....---__.
(Cut & Paste Address Label) Prices =y Change wi010ut notice.

Copyright (C) 1990, Ariel Publishing, Most Rights Reserved

Publisher & Editor-in-Chief
Classic Apple Editor
Apple llgs Editor
Contributing Editors

Subscription Services

Subscription prices in US dollars:

• magazine
1 year $29.95

• disk
1 year $69.95 6 mo $39.95

Ross W. Lambert
Jerry Kindall
Eric Mueller
Walter Torres-Hurt
Mike Westerfield
Steve Stephenson
Jay Jennings
Tamara Lambert
Becky Milton

2 years $56

3 mo. $21

Canada and Mexico add $5 per year per product ordered.
Non-North American orders add $15 per year per product
ordered.

WARRANTY and LIMITATION of LIABILITY

Ariel Publishing, Inc. warrants that the information in 8/16 is
correct and useful to somebody somewhere. Any subscriber
may ask for a full refund of their last subscription payment at any
time. Ariel Publishing's LIABILITY FOR ERRORS AND OMIS­
SIONS IS LIMITED TO THIS PUBLICATION'S PURCHASE
PRICE. In no case shall Ariel Publishing, Inc. Ross W. Lambert,
the editorial staff, or article authors be liable for any incidental or
consequential damages, nor for ANY damages in excess of the
fees paid by a subscriber.

Subscribers are free to use program source code printed herein
in their own compiled, stand-alone applications with no licensing
application or fees required. Ariel Publishing prohibits the distri­
bution of source code printed in our pages without our prior per­
mission.

Direct all correspondence to: Ariel Publishing, Inc., P.O. Box
398, Pateros, WA 98846 (509) 923-2249.

Apple, Apple II, Apple lie, Apple llgs, Apple lie, Apple lie+, Ap­
ple Talk, Apple Programmers Workshop, and Maciontosh are all
registered trademarks of Apple Computers, Inc.

AppleWorks is a registered trademark of Claris, Corp.

ZBasic is a registered trademark of Zedcor, Inc.

Micol Advanced Basic is a registered trademark of Micol
Sytems, Canada

We here at Ariel Publishing freely admit our shortcomings, but
nevertheless strive to bring glory to the Lord Jesus Christ.

On one hand I feel the slightest bit sacrilegious pub­
lishing a brand new Apple II technical journal before
the corpse of our late , great forebear (CAILA.P.P.L.E)
has even grown cold. On the other hand, I am pleased
to have an opportunity to put my money and time
where my mouth is. I have said for years that the
Apple II market is still thriving for those who serve it
well.

If those of us in II-dom always listened to "conven­
tional wisdom~, we would have packed it in and
bought PCs or Macs at least six years ago. In spite of
the Mac magazines' dire predictions, and Apple's
troubles notwithstanding, I have it on good authority
that 1989 was the best year ever for A2-Central, The
Byte Works. Applied Engineering, and of course, Ariel
Publishing.

And I am far from being pessimistic about the future .
The fact is that Apple's bottom line dilliculties in 1989
may eventually serve to reawaken the company hier­
archy. Industry analysts- both financially oriented
and those of a more technical ilk - have been pillaging
the company in the financial press for leaving its roots
and abandoning the low end market.

What has happened. friends, is that the rest of the
business world is now lending some credence to what
we Apple II folks have been saying all along.

This is a good thing, though it is but a beginning.

As one computer coordinator friend of mine said,
"Apple is out of their collective minds if they think
we're going to supply our classrooms with Macs. ~

Maybe the school districts in Silicon Valley have the
bucks for it, but in the rest of the USA. the Driver
Education classes drive used compact cars, not Lam­
borghinis. Don't get me wrong, the Lamborghini is a
great car and the Macintosh is a great computer. But
there is most definitely a profitable place in this world
for a Toyota - and the Apple II. Lest I become the target
for abuse, allow me to add that in many ways I believe
the Apple II is superior to the Macintosh. even in
performance. And I am willing to bet that Toyota. Inc.

makes more moolah than Lamborghini, Inc.

"She ain't pretty, but she has a
terrific personality."

Though the kiss of death to a 16 year old girl, I hope the
statement above comes to describe your feelings for 8/
16. You will not find flash and splash in our pages. You
won't even find any colors save black, white, and an
occasional grey. Worse, you'll see page after page oft ext
and source code listings. If there's any clip art it will be
small.

So do we have some sort oftwisted desire to be ugly? Not
really. It's just that in our two years of working with
Apple II programmers we have learned a few things
(maybe not as quickly as our subscribers would've
liked, but we did pay attention in class).

According to our surveys and interviews. you desire
timely information more than anything else. And lots
of it. We are therefore going to cram everything we
possibly can into our monthly allotment of pages.

That doesn't mean that our format is encased in con­
crete . On the contrary, we're still brainstorming ideas
for potential additions to and deletions from this maga­
zine. And we most definitely do read our mail. If you
have an opinion. voice it.

Where 's Mike?
Mike Westerfield and The ByteWorks staff couldn't
make our deadline this month. It appears we got 8/16
off the ground a little too fast for some! Though it pained
me to go on without an Orca C article (yes, C-fans, we've
been reading your letters). it was more important to be
on time. Mike and Co. will be with us in the future,
though, most likely on a bi-monthly basis.

The same is true of our Micol Advanced BASIC column.
MAB expert Walter Torres-Hurt needed a little more
time to whip his contribution into shape. Walter and the
Micol gang will be with us at least bi-monthly, too.

Just because Mike and Walter are tackling C, Pascal,
Orca assembler and MAB topics doesn't mean that the
rest of you have to sit back and watch. We'd be delighted
to consider your articles. Call or write for submission
guidelines (or download them off GEnie's A2PRO RT or
some other service - we're trying to get them spread all
over). So you don't have to hunt around looking for our
address: Ariel Publishing, Box 398 Pateros, WA 98846
Our phone: 509/923-2249. Please include a SASE.

Thanks to the advertisers!
Our advertisers in this first month of our publication
have really put theirmoneywhere their mouths are, too,
as far as supporting the Apple II community goes. They
are all companies worthy of your consideration.

For example, So What Software's new Call Box envi­
romnent is much more than an Applesoft connection to
the Ilgs toolbox. Many folks have overlooked the fact it
producesAPW assembly source code output, too, allow­
ing even you assembly types to design your screens,
dialogs, etc. in a graphically oriented environment.

And Night Owl Productions has a product almost all of
us IIgs owners will need sooner or later - an easy to
install replacement battery for your Ilgs . It beats taking
your motherboard to a dealer (who may sit on it for a
week) .

USA Micro has some excellent prices on hardware as
well as a proven track record. Those Laser computers
are really a good buy, especially for your second Apple.

KAT Systems of Kansas has some great h ard drive
buys , as well as some of the best prices on Orca
products you'll see. Say, is there some sort of Apple II
commune in Overland Park. Kansas. or something?

You 8 bit programmers ought to take a serious look at
Kitchen Sink Software's MicroDOT. This replacement
for BASIC.SYSTEM saves a ton of valuable Applesoft
program space and offers features BASIC.SYSTEM
never dreamt about.

And of course, Ariel Publishing has a few things that
may interest some of you, too! Incidentally, I think that
it is just too much of a conflict of interest to do much in
the way of reviewing our own packages. For that reason
we'll ship them to you "On Approval". You can review
them yourself.

Not so incidentally, I'd like to use this last column inch
to announce an interesting experiment. As a service to
Apple II programmers and companies, we will provide a
free half page ad to any Apple II company wishing to
recruit employees and announce openings.

Likewise, if you are a programmer looking for work (full
time, part time, or on a royalty or contract basis). we'll
offer you a free blurb to advertise yourself (c.f. p. XX) .
The only consideration is that you must be a subscriber.
our intention being to serve our customers.

Let's hope Apple , Inc .. begins to think the same way.

==Ross==

••••••••••••••••••••••••~ T~heMerl1"nMan1·ac ~LIJJ••••••••••••••••••••
........... ~~lr .. ~~~ .. ~ -....,~~-----0'!;:"'-... r ~~lr~~~-~

Filtering Out the Riff Raff
by Steve Stephenson
As some of you may know, I've written for Sourceror's
Apprentice in the past, and I really was honored when
Ross asked me to help launch 8/ 16! I'm not sure why he
picked me to write this column, but it might have
something to with my 'bullishness' on Merlin, which I've
been happily using since 1982. I'm currently doing all
of my development in Merlin 16+. and find that it
completely suits my needs.

In this column, I plan to show you how to 'make the
magic' in assembly language and how to get more out of
Merlin. I'll be focusing on 16-bit Ilgs code, and my
routines will usually be desktop oriented. Unless you
indicate otherwise, I will assume you are interested in
how to do the 'not so obvious'-in other words, if I had
trouble figuring it out, someone else is probably also

Insecticide

having trouble. This month's topic is just such a case:
when I first needed to add a filter to a dialog, I couldn't
find much on the subject.

When you use _ModalDialog (or any of the _Alert calls).
your input is handled through filter procedures. The
Dialog Manager has a built-in filter that allows the
retum key to act the same as clicking on the default
button. It also handles cut/ copy /paste operations. But
what are you supposed to do when you want more? The
Apple Ilgs Toolbox Reference: Volume 1 devotes a
whopping one page (6-25) to the subject of filter proce­
dures, and gives no examples!

To show you how it's done, I've prepared three general
purpose filters: one to handle the escape key, one to

So how can we be correcting errors if this is our first issue? No, we are not psychic (or psychotic). Rather,
because 8/16 is a reorganization and continuation of The Sourceror's Apprentice, Znews. and Reboot, we
have had ample time to make boo boos. We like to correct them as soon as possible. though, so if you ever
find bugs in one of our articles, please drop us a line.

• Sourceror's Apprentice: We discovered a mysterious insect in Jay Jennings's Generic Start II (Septem­
ber, 1989). I say "mysterious" because his source code and article were correct on the disk files he gave
me, but not in the final typeset article (gremlins?). At any rate, at shutdown you need to push the revised
StartS top record, not the original. Hence line three ofthe shutdown section should be: Pushlong •SSRec

We also discovered that Steve Stephenson's tip on p.6 oftheJanuary, 1990 issue was incorrect. The long
indexed addressing mode does roll over and cross bank boundaries. Glen Bredon himself cleared that up
for us (and noted that we forgot to roll over our date on the front cover, too! Shoulda been 1990).

• Reboot: Subscriber Robert Lanouette wrote to say, "One comment about your Spreadsheet Mockup (Oc­
tober, 1989). I typed it in, then got double imaging (FILE would become FILEE when I move the cursor
to BLANK, and BLANK would become BLANKK, etc.) on the top menu line whenever I moved the cursor
from one menu item to another. When I changed line 740 to read H(I) = PEEK(1403): PRINT M$(I);SPC(2)
... the double imaging disappeared." Thanks for clearingg thatt upp, Robertt.

NOTE: Back issues of Reboot (Applesoft programming), The Sourceror's Apprentice (Merlin assembly
language), and Znews (ZBasic programming) are available for $3 per issue as long as supplies last. We've
been promising an index for God-knows-how-long .. . soon, real soon.

gather a hex number, and one to gather a legal ProDOS
name. (I've put them all together in one procedure just
to keep it simple.)

To set the stage, you should imagine that your program
uses two different modal dialogs, one for hex input and
the other for name input. Each of these dialogs has
three items: an OK button, a Cancel button, and an
EditLine. As long as you're imagining, I suppose you
could add a title and a prompt to the dialog, but that's
not what we're here for. Note: I did not include the
template to create the dialog.

The fragment of code at MainProgram should be enough
to show how to call_ModalDialog with your filter. If you
want your filter to be used, but would also like to get the
benefit of the built-in filter. you must set bit 31 of the
address of your filter when you make the call to _Mo­
dalDialog. I took the liberty of modifying the super
macro to set bit 31. It is completely compatible with
previous code. When you want to set bit 31, simply add
a semicolon and anything for an additional parameter
(it's not used for anything other than to indicate that bit
31 needs to be set).

When I call_ModalDialog, I pass it a word for the result,
and the address of my filter. The Dialog Manager
(among other things) rearranges the stack and calls my
filter by means of a JSL. The space for the result is still
there, along with pointers to the dialog's GrafPort, the
event record, and the item hit. My filter routine may use
the pointers any way it needs to, but it must pop all of
them and put a value into the result word when it is
done.

On entry, I can count on the Data Bank Register and the
Direct Page being set to something that is only useful to
the Dialog Manager (and it must be restored if you
change it). So, I use the standard opening: save B, reset
B, saveD, reset D. I include a dummy section (at the
label StackPic) to make it easy to access the stack/
dpage variables.

On exit (see FilterDone). I restoreD, B, pop all pointers
off of the stack, and RfL back to the Dialog Manager. I
get control again after the Dialog Manager has run it's
built-in filter and possibly affected the result word. At
first glance, my stack cleanup may look strange. but it
is simple, easy to follow, quicker, and takes fewer bytes
than the standard subtraction method.

Now, let's get down to the serious business of doing
something in this filter. I start off with gathering the
state of the Open Apple key and the key pressed (if any).
Next, I determine what kind of event this is. If it's a key
event, then I need to check for the escape key. If it is the
escape key (or OpenApple-.). I simply make it look like

a click in the Cancel button. If it's not an escape, I can
check the key being entered into the EditLine. If it's not
a key event at all, then I want the Dialog Manager to
handle it. (Ignore the lines from :validate to :key for now;
I'll get to them later) .

Let's start with the escape key detectbr (see CheckEs­
cape). If I don't find an escape, I clear the carry and
return. Note that the X register, which holds False, will
remain unchanged; this is to become the result unless
another routine changes it. A result of False means that
I didn't find anything interesting and that the Dialog
Manager should handle the event. On the other hand,
loading the X register with True signals the Dialog
Manager that it shouldn't run through it's filter, but to
just return the result.

If I find that escape is being pressed. I s imulate a click
in the cancel button. By protocol, the cancel button is
always numbered 2 (and the default button, 1), so I
make the item hit a 2 and set the result word to True.
While I'm here. I think it's a nice touch to flash the
button for user feedback.

The next two routines (HexCheck and NameCheck) are
meant to be used with an EditLine item in the dialog.
This presents a new challenge: how to filter the keys I
am interested in without blocking the special editing
keys used internally by the Control Manager. The way
I get around the problem is to trap for the special keys
first, and pass them through unaltered.

The HexCheck routine shows how to ignore (or 'swal­
low') any key that I don't want and how to convert a key
to some other key. The way this filter works, you could
pound on the Z key (or any key other than a hex dig_it)
all day long and nothing would happen. Additionally,
lowercase letters are converted as if you had entered
them in uppercase. To swallow a key, set the Event
record's What code to null and the Item Hit to null, then
make sure to tell the Dialog Manager not to look at it
either by setting the result to True. I suppose you could
insert a _SysBeep here, if you're into noise.

The NameCheck routine also starts off with the edit key
trap, except it makes a special case for the return key
(more on that in a moment) . It too allows only certain
characters to pass through, while swallowing the oth­
ers. I also provide a place to change the case if you
desire. The last thing it does is to mark a flag that this
name has changed and needs to be re-validated.

The ProDOSName routine is entirely optional. While
Apple would discourage the use of such name filtering,
I would maintain that there are applications where it
has merit. What it does is check the name that is being
gathered for meeting ProD OS naming rules and enables

the OK button only when a legal name exists. As every
keystroke might result in this name changing, it needs
to be checked often. but not so often as to slow every­
thing to a crawl. I use the flag checked to prevent going
through the this routine when there is no n eed to.

The ProDOSName routine fetches the name string
(Pascal style) into a buffer. The first test is whether I
have any string at all; if not, I dim the OK button.
Otherwise I need to make sure the name begins with a
letter. I don't need to
check further as I have already made certain no illegal
characters could be entered. By the way, I control the
length of the name by using the value 15 in the
itemValue field when creating the EditLine.

There you have it! Custom dialog filter procedures in
one easy lesson .

1 •===
2 • Modal Dialog Filter Procedure •
3 • Copyright 1990 by Ariel Publ ishing •
4 • and Steve Stephenson •
5 •===
6 use 1/tool . equates/e16 .event
7 use 1/tool .equates/e16 .dialog
8 use 1/tool . equates/e16.control
s

10 do 0
11 -ModalD ialog MAC
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

DO
PHS
IF
LDA
ELSE
LDA
FIN
ORA
PHA
PHW
ELSE
PlSL
FIN

_ModalDialog
Tool
«<
fin

31 Nameitem =
32

] 0/2

#=] 1
"'] 1

#$8000

] 1

] 1

MAC
$F15

3

set bit 31

;else, do old way

; edit 1 i ne i tern#

33 •===
34 MainProgram
35
36
37
38
39 : input
40
41
42
43

-GetNewModalDialog #Template
PullLong DialogPtr

-ModalDialog #CustomFilter;+31
pla ; result null?
beq : input ; yes, go again
cmp #Nameitem ;1nEdit?

:done

:cancel

beq : input
ph a
-closeDialog
pla
cmp
beq
cmp
beq

#OK
:done
#cancel
:cancel

;yes, go til btn
;no, either lor 2

DialogPtr

; 1?
; yes
;2?
; yes

•===

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78 •
79
80
81
82
83
84
85
86
87
88
as
90
91
92
93
94
95
96
97
sa
ss

100
101
102
103
104
105
106
107

CustomFilter ent
phb
phk
plb
phd
tsc
ted

StackPic

: d
: b
: rtl
item
event
port
flag

dum
ds
ds
ds
adrl
adrl
adrl
dw
dend

ldy
lda
sta

ldy
lda
and
sta

ldx
ldy
lda
cmp
beq
cmp
beq

:validate
lda
bne
jsr
ldx
bra

:key
jsr
bcs

1
2
1
3
0
0
0
0

;push current bank
;set data bank

;set stack ptr
; to DP ptr

;this is how the stack
looks right now
;orig dpage
;orig data . bnk
;rtn addr (long)
; ptr to item hit
;ptr to event rec
;ptr to dlg port
;result to return

#oModifiers
[event], y ;get modifiers
KeyModifier

#oMessage
[event] ,y ;get the key

#$ff
theKey

#False ;preset result
#oWhat
[event], y ;get event kind
#KeyDownEvt ;key?
:key ; yes. check it
#AutoKeyEvt ;auto key?
:key yes, check it

not key event
checked ;name been checked?
:done ; yes, we're done
ProDOSName ; no, validate it
#False ;& always let Dlg Mgr
:done handle it .

Check Escape ;hit escape?
:done yes, exit

no, check input

108
10S
110
111
112
113
114
11S

lda NameOrNumber
beq :name

:number jsr HexCheck
bra : done

; get hex d i g.i t

:name jsr NameCheck;get ProDOS name
:done

stx flag ;the result

chr

116 >I<

117
118
11S
120
121
122
123
124
12S
126
127
128
12S
130
131
132

Fi lterDone
pld
plx
ply
pla
pla
pla
pla
pla
pla
phy
phx
plb
rtl

;restore d
;hold b & rtl bnk in X
;hold rtl addr in Y
;pop long (item ptr)

;pop long (event ptr)

;pop long (port ptr)

;re-stk rtl addr
;re-stk rtl bnk & b
;restore b

133 •===
134
13S
136
137
138
13S
140
141
142
143
144
14S
146
147
148
14S
1S0
1S1
1S2
1S3
1S4

CheckEscape
lda theKey
cmp •$1b
beq :escape

#''I

;escape?
; yes
;period? cmp

bne
lda
bit
beq

:none ; no
KeyModifier ;yes also need OA
•AppleKey got it?
: none ; no

:escape
lda •2 ;# of cancel btn
sta [i tern] ; make it i tern hi t
sta temp ; (also btn prt code)
-GetControlDitem port;temp
PullLong cxHandle;cancel btn's hndl

-Hil iteControl temp ; cxHandle;flsh on
-Hil iteControl •0;cxHandle ; and off

ldx •True ;rl got itr
sec
bra :done

;escaping

lSS :none
1S6 clc

; (X & item unchanged)
;not escaping

1S7 :done
1S8 rts
1SS
160 temp dw 0
161 cxHandle adrl 0
162
163 •==
164 "' keys used in an EditLine control
16S
166 keys
167
168
16S
170
171
172
173

dfb
dfb
dfb
dfb
dfb
dfb
dfb

$18
$1S
$06
$7f
$08
$1S
$0S

;control-X
;control-Y
; .control-F
;delete
; 1 eft arrow
;rt arrow
;tab

174 dfb $0d ;return (leave at end)
17S keysend
176
177 •===
178
17S
180
181

HexCheck
lda theKey ; special edit key?
ldx •keysend-keys

182 :edits
183

short ace
cmp keys-1 , x
longacc

;chk table
184
18S
186
187

beq :pass
dex
bne :edits

; yes, leave alone
;table done?

no, continue
188 :normal
18S cmp

bee
#'0 '
:swallow

; yes, not special

1S0
1S1
1S2
1S3
1S4
1SS
1S6
1S7
1S8
1SS
200
201
202
203
204
20S
206
207

cmp
bee
cmp
bee
and
ldy
sta
cmp
bee

:swallow
lda
ldy
sta
sta
ldx
bra

a'S'+1
:pass
a'A'
:swallow
•$Sf
•oMessage
[event], y
a ' F'+1
:pass

#0
•oWhat
[event], y

;0-S = good

; alpha, convert it

; to uppercase

;A-F = good

;gobble this key
;make event null

[i tern] ; & i tern hit = nu 1 1
•True ;tell DlgMgr we got it
:done

208 :pass
20S ldx •False ;let DlgMgr handle it
210 :done
211 rts
212
213
214
21S
216
217
218
21S
220
221
222
223
224
22S
226
227
228
22S
230
231
232
233
234
23S
236
237
238
23S

•===

theKey
Name Check

lda
ldx
ldy
beq
dex

•key send-keys
name:bad ; if good name,
:edits ; <cr> is allowed

;else, swallow it
:edits shortacc

:normal

cmp keys-1,x
longacc
beq :pass
dex
bne :edits

cmp #''I

beq :pass
cmp #'0'
bee :swallow
cmp a'S'+1
bee :pass
cmp a'A '
bee :swallow
cmp a'Z'+1
bee :pass
cmp •'a'
bee :swallow

;special key found

;dot ok

;0-S ok

;A-Z ok

240
241
242
243
244
24:5
246
247
248
249
2:50
2:51
2:52
2:53
2:54
2:S:S
2:56
2:57
2:58
2:59
260
261
262
263
264
26:5
266
267
268
269
270
271
272
273
274
27:5
276
277
278
279
280
281
282
283
284
28:5
286
287
288
289
290
291
292
293
294
29:5
296
297
298
299
300
301

cmp •'z'+1
bcs :swallow ;a-z = ok

ldy uppercase ;convert?
beq :pass ; no
and •$:Sf
ldy •oMessage
sta [event],y ;sneak in sub char
bra :pass

:swallow
lda
ldy
sta
sta
ldx
bra

•0
;gobble this key

; make event null
•oWhat
[event] ,y
[item] ; & item hit= null

;tell DlgMgr we got it •True
:done

:pass

:done
ldx •False ;let DlgMgr handle it

stz checked ; mark it needing ck
rts

*===

ProDOSName

:bad

:good

:hi 1 ite

-GetiText port;•Nameitem;#NewName
lda NewName ;length of string
and •$ff
beq :bad ; none, skip remainder .

lda NewName+1;1st chr mustbe alpha
and •$:Sf
cmp •'Z'+1
bcs :bad
cmp •'A'
bcs :good

lda •inactiveHil ite ;disable item
bra :hi 1 i te

lda •noHil ite ;enable item

pha ; (for _Hil iteControl)
sta name:bad ;0=good ; ff=bad
-GetControlDitem port ; •OK ;get hndl

; (leave handle on stk)
_H i 1 i teContro 1 ; f i x the dimming
inc checked ; mark it checked
rts

*===

KeyModifier dw 0
theKey dw 0
DialogPtr adrl 0
NameOrNumber dw 0
uppercase dw 0
checked dw 0
name:bad dw 0
NewName ds 16

;Event modifier bits
; Event key (lo 8 b its)
;ptr to the dialog
;flag: which routine
;boolean: force upper
;boolean: name checked
;boolean : name is bad
;name buffer

*===

Call
Box®

The Toolbox
Programming

System

WYSIWYG?
(What You See Is What You Get)
Four powerful WYSIW\IG editors slash program­
ming time dramatical ly for Assembly, C, Pascal
and Applesoft BASIC programs, YES' ... I said
Applesoft, CALL-BOX includes the first full func­
tion Applesoft BASIC interface for the Jigs toolbox
as well but let's talk about the editors first.

• Image Editor .
Create Icons, Cursors, and Pixel images in
either 640 or 320 mode.

• Window Editor
Create Window templates with scroll bars, con­
trols, etc. plus custom colors.

• Dialog Edito r .
Create Dialog templates using Radio buttons,
Check boxes, Line edit items, text in various
styles, etc.

• Menu Editor
Create Menu templates with keypress equiva­
lents, checks, diamonds, Font styles, etc .

All editors output APW source code, Linkable
object code or resource files to make the best
match to your current development system. Every­
thing is accessable from the CALL-BOX Editor
shell that includes these editors plus File utilities,
Configuration utilities, programmable application
launcher and the BASIC interface.

The CALL-BOX BASIC interface allows the Apple­
soft programmer to use Super Hi-Res via Quick­
draw II , desktops, menu bars, windows, ports,
fonts , dialog boxes, and the c ursor linked task
master system in the Jigs. This interface incor­
porates automated calls to minimize the code
needed in your BASIC program and has added
Long Call , Long Poke, Long Peek, and super
array functions to bring Applesoft up to snuff
with the additional memory in your llgs.

All this plus a demo, sample code and bound
manuals. Fully GS/ OS V5.0 compatible and al l in
one place for the f irst time ever'

The CALL-BOX TPS $99.00
Add $4.50 shipping and handling.
Foreign add $10.50.
Send check, money order, Visa or MasterCard .

(714) 964-4298

• J The We~ekend Hardware Hacker •
.. m.~m~r•~·~~~m• • • 1 ... _ ---oo:::~~~~~----==-----'r •.. ~r•~~~~r~r·~ •
Galvanic Skin Response: Getting a Jolt
FroiD Your Joystick
by David Gauger II

Editor: This article - and its successors since we plan
more - probably seem anachronistic. I certainly know of
noMacTutor subscribers tearing into their machines! But
David reminded me that the Apple II has a built-in
"window to the world" - and this sets it apart among all
others, even today. Just try to do a similar project on a
Macintoshfor under $250! Apple II users have always
been an outgoing, experimental lot. I think David's series
is going to appeal to many of you. Even if you never
actuaUy build anything, you'll still be amazed at what
the Apple II can accomplish with such relative ease.
==Ross==

Interfacing a computer to the outside world is one of
those things that falls somewhere between art and craft.
An obvious solution often doesn't work as well as one
that is creative or offbeat. The answers to many
interfacing problems lie in rethinking them in new and
different terms.

Steve Wozniak's Disk II controller card is a prime
example. Prior to his design, disk controller cards used
many expensive chips. To bring the cost down, Wozniak
rethought the problem in different terms. Instead of
relying only on hardware. he implemented many func­
tions in software. drastically reducing the chip count.
The solution he developed was so elegant that it's still
in use today in all Apple II's. Even the Macintosh has
its version of the controller in its "SuperWoz" chip.

In this article we will "rethink" the lowly pushbutton
input in your Apple's game port and show you how to
build a biofeedback monitor that interfaces to it. The
usual function of the pushbutton input is to annihilate
aliens in arcade games, but it's really a one-bit TTL­
compatible input port capable of much more than
activating phaser beams.

Pushbutton Inputs

Most Apple lis have around 3 pushbutton inputs (the lie
and lie+ have 2 and the GS has 4). No matter what flavor
your Apple, all such inputs behave in much the same
way. Like most things related to computers, we number
them starting with 0. On newer Apples, the Open Apple

and Solid Apple keys (Apple and Option on the IIgs) are
connected to pushbutton inputs 0 and 1 in parallel to
the joystick push buttons.

Electronically speaking, a pushbutton input simply
looks at the voltage you give it to determine the button's
status. If the input sees around 0 volts, the switch is
considered open (not pushed). If the voltage is 5 volts
or so, then it's considered closed (pushed) . Each of
these pushbutton (PB) inputs is electrically connected
to a pin in the game input port, and, of course, to an
address in memory. PBO is at address 49249 ($C061).
PB1 is at 49250 ($C062) and PB2 is at 49251 ($C063).

From the software side of things, each pushbutton is
connected only to the highest bit of its address in
memory. If the button is pushed, the high bit is set to
one. If it's not pushed, the high bit is zero. Only the high
bit is significant. Since the high bit is worth 128 in the
binary number system it is easy to tell when the button
is pushed. All you need to do is check to see if the value
at the pushbutton's address is greater than 127. If so,
the button is pressed. In assembly language, the check
can be most easily performed with the BMI or BPL
instructions.

Most programs use only the minimum information that
this one-bit input can provide. In an arcade game, when
you push the button, the phaser fires: when you release
it, the phaser stops. This is fine, but it leaves much of
the port's capability untapped.

Let's rethink the use of this port by shifting our focus
from a mere on-o!T reading to reading how often it is
pushed in a given period of time. In other words, the
rate of button pushing is the significant thing. This
opens up many possibilities since the port then be­
comes capable of receiving analog (continuously vari­
able) data. not just binary (strictly on or off) data. We
can receive analog data through this port at relatively
high speeds. since an input port can be checked for
activity very rapidly in machine language (over 140,000
times a second in a 1 mhz Apple).

Biofeedback and Button Pushing

Biofeedback has been around for a while but surpris-

ingly few people have ever tried it. Biofeedback meas­
ures a biological function that correlates to your tension
level, then feeds that information back to you in real
time. Immediate feedback enables you to identify the
things that make you tense, and discover those tech­
niques most effective in promoting relaxation.

One biological function that varies with tension level is
the electrical resistance of your skin. The more tense
you are, the more you sweat: and the more you sweat.
the lower your skin resistance. This skin characteristic
is known as galvanic skin response. or GSR for short.
Because people often get tense and sweat when not
telling the truth, GSR is one of several measurements
made by a lie detector.

Your health, level of physical activity, the temperature
of your hands, and even the weather can all have a
profound effect on your GSR. Your GSR is constantly
~hanging. Because it's not stable. GSR is usually
mterpreted as a relative phenomena. The most com­
mon GSR technique is to first establish a normal or
baseline GSR, then note changes or departures from the
norm.

Your Apple II computer is well-suited to making the
GSR measurements for a biofeedback system. Not only
can the computer collect lots of data, but it can display
the data graphically. manipulate it, scale it, compare it
to previous measurements. and store it on disk for later
use, to name just a few ideas. The pushbutton input is
up to the task, but it'll need the help of some simple
hardware and a small machine language driver.

Construction

To get your biofeedback monitoring system up and
running, you'll need to build a device that converts your
GSR into a signal usable by the pushbutton input. Two
schematic diagrams (Fig. 1 and 2) are provided, al­
though the circuit is identical in each case. The only
difference is the connector used to plug the device into
your Apple. ·

Build your biofeedback monitor in a small plastic
experimenter's box such as those sold by Radio Shack.
Use the parts list in Fig. 3 if your computer has a DB-
9 joystick connector, and the list in Fig. 4 if you have a
16-pin DIP connector. GSR measurements are col­
lected with two parallel 5 I 8 inch by 2 1 12 inch strips of
common aluminum foil glued to the top of the plastic
box. Glue the dull side down with rubber cement and
separate the strips by about 318 inch. (See Fig. 5).

Drill two holes through the plastic, 114 inch from the
same end of each strip. A machine screw's head will

contact the foil and allow connection between the foil
and the rest ofthe circuitry. You can connect the wires
to the screw with a lug, or by wrapping the wire around
the screw before tightening the nut.

It is probably best to mount the components on a small
1 inch square circuit board cut from a larger one. Once
it's working, the circuit board can be stuck to the
bottom of the box with double sided tape or silicon
sealer. The rest of the construction is not critical. Use
common construction techniques. insulating all bare
wires with black electrician's tape or shrink tubing, and
checking for shorts caused by things like stray bits of
solder.

Double check your wiring, especially the connector
going to your Apple. It's easy to confuse the pins. We're
only dealing with about 5 volts or so, so danger from
voltage is not a problem. but wrong connections to the
gameport could easily damage your Apple.

The Software

Next, type in the Applesoft listing and save it on disk
with the name "BIOFEEDBACK". If you have an assem­
bler, type in the assembler source code and assemble it
using the instructions appropriate for your assembler.
Otherwise, enter the object code from the monitor and
save it with the command BSAVE
CYCLETIMER.OBJ,A$303,L$3A.

These programs work under DOS 3.3 or ProDOS, but
both files must be on the same disk (and in the same
directory if you're using ProDOS.)

Using the Biofeedback System

To use the complete system, plug your Biofeedback
monitor into the correct connector on your Apple, turn
the switch on the biofeedback sensor to the on position,
and run the program BIOFEEDBACK. Make sure you
are in 40 column mode with the checkerboard cursor
active before you start.

First. the program needs to calibrate itself to your
baseline GSR. Place two fingers of one hand on the
aluminum strips. The biofeedback hardware is sensi­
tive to movement and pressure, so position your arm
and hand to prevent any pressure variation of your
fingers on the aluminum strips. Your arm, hand, and
fingers should be as relaxed as possible. When you are
ready to begin calibration. hit any key. Calibration
takes a few seconds, and then the graph of your GSR will
start appearing on the screen along with many session
statistics.

0.
·;;::
+-'
C/)

0
LL

~..__

0.
·;;::
C/)

-"5
LL

..___

8 4

7 Gnd 5v

sw 1
0.

·;;::
+-' R1 C/)

"5
1K

555
3

LL

6

2

C1 +
-1

~ C2
-1

Figure 1 - Schematic Diagram for DB-9 Connectors
(Apple lie, lie+, lie, llgs)

8 4

~

fr
+5V

7
0.

·;;:: PB2
+-' R1 C/)
- 1K 3 "5 555
LL SW1

6 Gnd
'---

2

C1 I+

-1 I
~2 T 1

Figure 2 - Schematic Diagram for 16 pin DIP Connectors
(Apple II, II+, lie, llgs)

1 1E
2 1f
3 1L 0
4 g. 1::
5 ~ 1,
6 <.9 1
7 1(

8 ~

Figure 3: Parts List for DB-9 Version

Quantity Description Radio Shack Part II Cost

1 555 Timer 276-1723 $1 0 19
2 01 Mfd Tantalum Capacitors 272-1432B .59 eo
1 1 K ohm Resistor 271-023 0 19
1 DPDT Toggle Switch 275-626 2.59
3 ft Shielded 2 Conductor Wire 278-1276 3.29
1 Experimenter's Box 270-220 1 0 79
1 DB-9 Male Connector 276-1537 .99

Total $11 0 22

Figure 4: Parts List for 16 Pin DIP Version

Quantity Description Radio Shack Part II Cost

1 555 Timer 276-1723 $1 0 19
2 01 Mfd Tantalum Capacitors 272-1432B .59 eo
1 1 K ohm Resistor 271-023 0 19
1 DPDT Toggle Switch 275-626 2.59
3 ft Shielded 2 Conductor Wire 278-1276 3.29
1 Experimenter's Box 270-220 1 0 79
1 16 Pin DIP Header *H/A .65

Total $10.88

*The 16 pin DIP header is not made by Radio Shack anymore. Instead, it is part II 16 HP
available from Jameco Electronics, 1355 Shoreway Road, Belmont, CA 94002 (415) 592-8097

Figure 5 - GSR Measuring Device

Cable to gameport

Screw goes
through foil and
plastic. Connection
to electronics on
underside.

Strips glued to
case with rubber
cement.

Strips separated by
about 3/8" inch.

Strip dimensions:
2 1 /2" long by 5/8" wide.

As the program runs, it measures your GSR, plots the
results on the graph portion of the screen, and updates
the statistics at the bottom. This process continues Highest:
until the graph reaches the right side of the screen at

readings are numbered sequentially
since the beginning of the session.
the highest reading (lowest tension
level) detected since the beginning of
the session. which point it wraps around and begins plotting over

the previous data on the left side of the screen. When Lowest:
the graph wraps around, the screen average (SCRAVG)

the lowest reading (highest tension
level) detected since the beginning of
the session. starts over; the rest of the statistical data (HIGHEST,

LOWEST, etc .) is valid and carries over into the new Span:
screen.

The difference between the highest
and lowest readings.

The top of the screen represents high tension while the
bottom represents lower tension. Remember that a
high GSR reading means that your skin resistance was
high because you weren't sweating, so you must be
relaxed. Conversely, a low GSR means that you're
tense. To represent them on the graph correctly, low
readings are plotted at the top of the screen and high
readings at the bottom. an important fact to remember
when evaluating the statistical data at the bottom of the
screen.

Because GSR readings can vary so widely, the program
provides two sensitivity levels. High sensitivity is the
most accurate, but the plot is a jagged line that often
goes off the screen. You can remedy this situation by
recalibrating to bring the plot back to the center of the
screen, or by switching to low sensitivity. Low sensitiv­
ity attempts to scale the data so that all of it fits on the
screen, but the changes in the GSR graph are less
obvious. Try them both and use the one that is most
helpful to you at the time.

Changing the sensitivity level does not change the data
collected, only the way the data are represented on the
graph. Changing the sensitivity level or recalibrating
causes the program to regraph old data in terms of the
new setting to allow new readings to be compared with
the older data on the graph.

The Statistics

The statistics at the bottom of the screen are a numeri­
cal summary of what is represented on the graph.
Remember that a high number represents high skin
resistance and is associated with a low level of tension.

Current: the reading currently being plotted.
Base: the base GSR measurement currently used

plot the graph. This number changes
each time you recalibrate.

Scr Avg: average of the newest data plotted.
This includes all data to the left of
the moving cursor.

Sans: the current sensitivity setting.
Reading i:the number of the current reading. All

The Options

Several options are available while the program is
running. Hitting the following keys while the program
is graphing your GSR will have the listed effect:

C: Calibrate If your readings go off the screen
recalibration will put them back i
the center of the Hires graph. Da
are regraphed in terms of the new
calibration .

S: Sensitivity Sensitvity is retoggled and data
are regraphed.

P: Pause Hit any key while in the Pause mod
to resume.

?: Help Displays these choices at
bottom of screen. Hit any key to
resume.

Q: Quit Quit the session.

Theory of Operation

Getting your skin to talk to your Apple (i.e. measuring
your GSR) presents a bit of a problem. The first solution
might appear to use the game controller inputs since
they measure resistance directly, but the values of a
typical GSR lay that idea to rest. For example, my GSR
has varied from about 20K ohms to almost 500K ohms.
Since the game controllers are capable of measuring
from 0 to only 150K ohms, many GSR measurements
will be beyond the reach of the game controller input.

A better solution is to use the technique described
earlier: employing a pushbutton input. transfer the

u:lata by varying the rate of "button pushes". A low GSR
reading yields closely-spaced "pushes"; higher GSR
readings come farther apart. The electronics are
acutally rather simple, so let's delve into the technical
side of things for a moment. If electronics don't interest
you, just skim this next part; you don't have to under­
s tand every connection to use your biofeedback moni­
tor.

The Hardware Interface

Normally. the PB inputs are at ground level: when they
aren't pushed. the voltage on their respective pins in the
game port is 0 . When you want to "push the button",
you connect the PB input to +5 volts. All we have to do
to register a button push is apply +5 volts to the correct
pin for the length of time we want the button pushed.
There doesn't have to be a physical switch present since
the only important thing is how much voltage the PB
port sees.

There are many ways to swing the voltage on the PB
input pin between 0 and +5 volts. Joysticks and
paddles use a switch to connect the PB port to the 5 volt
supply found in the game connector itself. The GSR
monitor uses a different technique: a type of oscillator
called an astable multivibrator whose output swings
between these two voltages at a regular rate of speed. A
chip called a 555 timer does this job very well.

The 555 circuit used to generate this swinging voltage
includes a resistor and a capacitor. which, together.
determine the oscillation frequency. The number of
times per second the 555 timer swings between 0 and
5 volts is directly proportional to the values of these two
components. If you build the circuit with a fixed
capacitor and a fixed resistor. you'll always get the same
rate of oscillation. If you make either component
variable, you can vary the output frequency.

Suppose we use a fixed capacitor. but substitute your
changing GSR as the resistor portion ofthe circuit (after
all. GSRisaresistance). NowwhenyourGSRshifts. the
circuit sees a changing resistance. and the oscillation
frequency varies by a proportional amount.

Since the output of the 555 swings between 0 and 5
volts. its output can be directly connected to a push but­
ton input in the game port and the game port will be
fooled into thinking a button is being pushed. So when
your skin resistance decreases due to sweat. the PB port
will see an increase in the number ofbutton pushes per
second. Should your skin resistance rise. the PB port
will detect fewer pushes per second. Measuring your
GSR becomes a simple matter of measuring the elapsed
time between pushes. (See Fig. 6)

The Machine Language Driver

The main job of the software portion of our interface (the
driver) is to measure the time between button pushes.
Most time-dependent tasks are best dealt with in
machine language since its faster execution speed
makes precision easier to achieve. CYCLETIMER is a
machine language subroutine called from the main

Applesoft program that does nothing but measure the
length of time between pushes.

Looking at this from the game port's point of view. what
CYCLETIMER will see is a bunch of shifts between 0 and
5 volts. To make any sense out of this we need to think
of these voltage changes as cycles. One complete cycle
consists of a period of time where the voltage is 5 volts
followed by a period of time where it is 0 volts.

CYCLETIMER's job is to measure (time) the length of
one complete cycle. To be consistent. the routine must
start measuring at the same point in each cycle.
CYCLETIMER accomplishes this by triggering only on
the rising edge. In other words. it is sensitive only to the
transition from 0 to 5 volts.

One cycle can be defined as the time between sequential
rising edges. so CYCLETIMERjust finds the first rising
edge and begins counting the time period. counts
through the 5 volt portion of the cycle, keeps counting
when the voltage returns to 0 volts. and finally stops
counting the instant the voltage begins its rise to 5 volts
again.

CYCLETIMER measures (or counts) the length of time
between each button push by going around in a loop,
incrementing a counter each pass. When the second
rising edge is detected. we know the cycle is over. so the
routine exits. and the the count then reflects the length
of the cycle. The larger the count. the longer the period
of the cycle.

The counter in CYCLETIMER is actually a 3 byte
number maintained in locations 768, 769 and 770.
Location 768 ($300) contains the number of ones. while
769 and 770 hold the number of groups of 256 and
65536, respectively.

The Applesoft Program- How It Works

BIOFEEDBACK is not a long program since its main
function is just to display data the hardware and
software interfaces deliver to it. Most of the hard work
is done by the hardware and CYCLETIMER. The
subroutine at 990 is the initialization routine. The code
at 680 performs calibration by taking 100 readings and
totaling them: the total (TTL) is used in determining how
to scale the data coming in. The routine at 590 actually
reads the data collected by the interface. Line 630
PEEKs the data passed in locations 768-770 into a
numeric variable.

Each point plotted on the screen is really an average of
10 readings to smooth out the potentially jagged-look­
ing graph. At line 420 is a subroutine that updates all

the numerical data at the bottom of the screen.

The main program loop is in lines 150-280. Tnis loop
calls most ofthe other subroutines and scales the data.
The sensitivity levels are represented by the variable
SENS. If SENS is one, the average of your calibration
data is put at the center line on the screen, doing no
scaling at all (a change of one in the data will be reflected
as a change of one point on the graph) . If SENS is zero,
the program scales the data with the attendant reduc­
tion in sensitivity.

Modifications and Improvements

If you have an unaccelerated Apple II+ , lie or lie, you
might want the program to plot readings a little faster
than it does. Recall that each point plotted on the
screen is actually ten GSR readings averaged together.
If we lower the number of readings take in line 610 to 5
(FOR Y = 1 TO 5) and correct line 660 to agree with it,
(GSR = INT (Y /5)), the program will plot readings
roughly twice as fast.

The BIOFEEDBACK program presented here could be
considered unfinished. Many enhancements could be
added. For example, session data could be saved to
disk, audio feedback could be added, and other types of
statistics can be collected and displayed. The whole
system could be rewritten to support the mouse and use
a windowing interface. Or.. . maybe the we need to
rethink the project in completely new terms!

<l>
g>
= 0
>

0

Figure 6 - Cycle Time vs. GSR

Short cycle ~ low GSR' Long cycle ~ high GSR
reading ~ high stress /reading ~ low stress

~~------A~~

Time --->

Figure 6 - Cycle Time vs. GSR

Cycletimer measures the length of one
complete cycle from rising edge to rising edge.

+Sv starting here ending here

-~llliL 0

Time -- ->

Editor: A note about our Apples oft listings - in an effort to
converve space, most of our program listings will be
single column. This means that many lines will wrap,
particularly in Applesoft programs. We are experiment­
ing with different layouts, but .from our jaundiced view­
point, it appears that indenting wrapped lines is one of
the best options. Let us know what you think. == Ross =

BIOFEEDBACK Program L ist ing

100 REM BIOFEEDBACK
110 REM 1-11-90
120 REM (C) 1990
130 REM BY DAVID GAUGER II
140 GOSUB 1000: GOSUB 690 : GOSUB 960 :GOSUB 890
150 REM MAIN LOOP
160 TALLY = 0
170 CNTR = 1: TTL = GSR
180 KEY= PEEK (KBD) : IF KEY > 127 THEN 300
190 GOSUB 600
200 ARRA Y(CNTR) = GSR
210 IF SENS$ ="HIGH" THEN FUDGE BASE-80 :

DOTLOC = GSA - FUDGE
220 IF SENS$ = "LQI.J"" THEN FUDGE 80 I

BASE:DOTLOC = GSR • FUDGE
230 IF DOTLOC < 0 THEN DOTLOC = 0
240 IF DOTLOC > 159 THEN DOTLOC = 159
250 HCOLOR= 0 : HPLOT CNTR , 0 TO CNTR,158 :

HCOLOR= 3: HPLOT CNTR,DOTLOC
260 HCOLOR= 3 : HPLOT CNTR + 1, 0 TO CNTR +

L 158
270 CNTR = CNTR + 1 : IF CNTR = 279 THEN

HCOLOR= 0 : HPLOT CN TR ,0 TO CNTR , 158
:GOTO 170

280 GOSUB 430 : GOTO 180
290 REM KEYBOARD
300 POKE STB,0:KEY=KEY- 128:KEY$ CHR$ (KEY)
310 IF KEY$ = "C" THEN GOSUB 690 : GOSUB 960 :

GOSUB 790 : GOSUB 890: GOTO 180
320 IF KEY$ = "S" THEN IF SENS$ = "HIGH " THEN

SENS$ = "LOW " : VTAB 24 : HTAB 11PRINT
SENS$; :GOSUB 960 : GOSUB 790 : GOTO 180

330 IF KEY$ = "S" THEN IF SENS$ ="LOW " THEN
SENS$ ="HIGH": VTAB 24 : HTAB 11 :
PRINT SENS$; :GOSUB 960 : GOSUB 790 :
GOTO 180

340 IF KEY$ = "P" THEN HOME : VTAB 22 :
HTAB 1:PRINT"IN PAUSE MODE: HIT ANY
KEY TO CONTINUE."; : GET A$: HOME :
GOSUB 890: GOTO 180

350 IF KEY$ = "I " THEN GOSUB 380: HOME :
GOSUB 890: GOTO 180

360 IF KEY$ = "Q" THEN HOME : VTAB 22: HTAB
5 :PRINT "SURE YOU WANT TO QUIT?(YIN)";
:GET A$:IF A$= "Y" THEN TEXT : HOME
: END

370 GOSUB 890: GOTO 180
380 HOME : VTAB 21 : HTAB 1
390 HTAB 5 : PRINT "S = TOGGLE SENS . C =

CALIBRATE"
400 HTAB 5: PRINT "P = PAUSE Q = QUIT"
410 VTAB 24 : HTAB 5 : PRINT "HIT ANY KEY TO

CONTINUE .. . " ;: GET A$: RETURN

420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630

640
650
660
670
680
690

700

710

720

730

REM UPDATE STATISTICS
VTAB 21: HTAB 11: PAINT"
VTAB 21 : ·HTAB 11: PAINT GSA
TALL~= TALL~+ 1:TTL =TTL+ GSA
VTAB 21 : HTAB 31: PAINT TALL~
VTAB 22: HTAB 11: PAINT"
VTAB 22 : HTAB 11 : PAINT BASE
IF GSA > HIGHEST THEN HIGHEST GSA
VTAB 22: HTAB 31: PAINT HIGHEST
VTAB 23: HTAB 11: PAINT"
VTAB 23: HTAB 11: PAINT INT (TTL I CNTA)
VTAB 23: HTAB 31: PAINT" "
IF GSA < LOWEST THEN LOWEST = GSA
VTAB 23: HTAB 31: PAINT LOWEST
VTAB 24 : HTAB 11: PAINT SENS$;
VTAB 24: HTAB 31: PAINT HIGHEST- LOWEST;
RETURN
REM GET A GSA READING

~ = 0
FOR X = 1 TO 10
CALL 771

GSA = PEEK (770) * 256 A 2 + PEEK (769) *
256 + PEEK (768)

~ = ~ + GSA
NEXT X
GSA = INT (~ I 10)
RETURN
REM CALIBRATE
HOME :TL = 0 : VTAB 2: HTAB 14 : INVERSE :

PAINT "BIOFEEDBACK" : NORMAL :VTAB 5 :
HTAB 11 :PAINT "B~ DAVID GAUGER II"

VTAB 10: HTAB 4 : PAINT "(BE SURE CAPS LOCK
KE~ IS DOWN.) "

VTAB 22 : HTAB 1 : PAINT "HIT AN~ KE~ TO
BEGIN CALIBRATION ... • .. GET A$

HOME : VTAB 23: HTAB 15: FLASH : PAINT
"CALIBRATING" : NORMAL

FOR Z = 1 TO 10

740
750
760
770
780
790
800
810
820
830

840

850
860
870
880
890
900

910

920

930

940
950
960
970
980
990
1000
1010

1020
1030

GOSUB 600 :TL = TL + GSA
NEXT Z
BASE = INT (TL I 10)
RETURN
REM REDRAW DATA
X = 0
X = X + 1
IF X > 279 THEN RETURN
IF AAAA~(X) = 0 THEN RETURN
IF SENS$ = "HIGH" THEN DOTLOC AAAA~(X)

(BASE - 80)
IF SENS$ = "LOW " THEN DOTLOC AAAA~(X) *

(80 I BASE)

IF DOTLOC > 158 THEN DOTLOC = 158
IF DOTLOC < 0 THEN DOTLOC = 0
HPLOT X.DOTLOC : GOTO 800
REM INIT STATISTICS DISPLA~
HOME
VTAB 21: HTAB 1: PAINT "CURRENT HTAB

19 : PAINT "READING a = ";
VTAB 22: HTAB 1 : PAINT "BASE HTAB

19: PAINT "HIGHEST
VTAB 23: HTAB 1: PAINT "SCA AVG HTAB

19: PAINT "LOWEST
VTAB 24: HTAB 1: PAINT "SENS HTAB

19: PAINT "SPAN
RETURN
REM SETUP HIRES SCREEN
HGA : HCOLOA= 3
HPLOT 0.0 TO 0.159 TO 279.159
RETURN
REM !NIT
SENS$ = "LOW " : DIM AAAA~(279)
LOWEST = 10000:HIGHEST = 0:KBD = 49152:STB

= 49168
PAINT CHA$ (4)"BLOAD C~CLETIMEA . OBJ"
RETURN

Cycletimer Listing

1 ********************************
*

0303: A9 00

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

* CYCLETIMER
*
* by David Gauger II
*
* (C) 1989
*
* Merlin 8 Assembler

*

org $303

low = $300 ;ones passed to BASIC here
med = $301 ;groups of 256 passed here
high = $302 ;groups of 65536 passed here
bttn = $C063 ;address of pushbutton #3

start lda #00 ; init counters

0305: 80 00 03 21 sta low
0308: 80 01 03 22 sta med
0308: 80 02 03 23 sta high
030E: 2C 63 C0 24 wavehi bit bttn
0311: 30 FB 25 bmi wavehi
0313 : 2C 63 C0 26 wavelo bit bttn
0316: 10 FB 27 bpl wavelo
0318: 20 29 03 28 posjsr update
0318: 2C 63 C0 29 bit bttn
031E : 30 F8 30 bmi pos
0320: 20 29 03 31 neg jsr update
0323 : 2C 63 C0 32 bit bttn
0326 : 10 F8 33 bpl neg
0328 : 60 34 dun rts

35
0329: EE 00 03 36 update inc low
032C : F0 03 37 beq nextl
032E: 4C 3C 03 38 jmp done
0331 : EE 01 03 39 nextl inc med
0334 : F0 03 40 beq next2
0336: 4C 3C 03 41 jmp done
0339 : EE 02 03 42 next2 inc high
033C: 60 43 done rts

With the advent of System Disk 5.0. a new method of
modifying the settings of the Apple IIgs is available.
through the Control Panel NDA. Unlike the text-based
control panel (accessed from the CDA menu). the NDA
is much more flexible in that it is easily expanded with
additional CDEVs (Control panel DEVices).

Every time the Control Panel NDA is selected from the
apple menu of a desktop application. it scans the *I
SYSTEM/CDEVS folder of the boot device searching for
all files with a type of $C7 /$0000. Each CDEV found is
recorded by the NDA in a separate file (*/SYSTEM/
CDEVS/CDEV.DATA). The icon and titleforeachCDEV
is displayed in the NDA window. and can be clicked on
to activate the corresponding CDEV.

The purpose of this article is to show how you can create
your own CDEV with very little effort. CDEVs are not
restricted to modifying the system settings-some other
uses for them might be a screen saver. or to control a
piece of hardware in your computer. In this article. I will
show how to write a CDEV to control the popular

;positive 1/2 of cycle?
; yes : 1 oop unt i 1 negative
;negative 1/2 of cycle?
;yes: wait for 1st rising edge
;update counters (positive ha 1 f)
; st i 1 1 positive 1/2 of cycle?
;yes - keep counting
;no: neg now, but keep counting
; st i 11 negative 112 of cycle?
;yes - keep counting
;no: found 2nd rising edge .

;update counters here
; if ro 11 ed over, inc 256'S (med)
;otherw ise just rts
; next 256
; if rolled over , inc 65536'$
;otherwise rts
;next 65536
;don't worry for 65536 rollover

=)

TransWarp GS accelerator card.

Let's take a look at the Rez source file (listing one) first.

Each CDEV is required to include three resource types.
in a predetermined order. with an ID of 1. The first
resource in the file m ust be a standard icon resource.
type $8001. This is the icon that will be displayed in the
NDA window. If the CDEV has an initialization routine
(discussed later). the icon will also be displayed on the
bottom left comer of the screen at boot time. One thing
to be aware of with the icon is that it must have a height
of 20 and a width of 28 in order to be displayed properly
during boot up. The reason for this is that the GS/OS
boot code does not use the size information supplied
with your icon, but is hard coded for an icon that is 20
X 28. If you don't have an initialization routine. the icon
can be any legal size.

Here's what the icon resource looks like in Rez code:

I* resource type $8001, 10 = 1 */

resource rlcon (1) {
(icon f 1 ags),
(icon height),
(i con w i dth),
(icon data),
(mask data) ,
) ;

The second required resource is the actual program
code that does the work for the CDEV. The CDEV code
resource (type $80 18) is simply your application,
turned into a CODE resource and inserted into the
CDEV resource fork. This resource is then loaded and
called when the CDEVs icon is selected in the NDA. The
maximum size of the CDEV code resource is 64K, which
is more than enough for most applications.

The command (in the Rez source code) to do this is:

"Data Rectangle" is four words (a standard RECf)
containing the size of the window the CDEV needs to
work in. The top left corner must be 0,0.

"Machine" is a one byte field containing the minimum
ROM version needed for the CDEV to run. For example,
this could be useful when writing a CDEV that needs a
ROM 03 GS to run.

"Version" is a one byte field containing the version
number of the CDEV.

"Enabled" is a one byte field used to determined whether
the CDEV can be activated or not. When this byte is
zero, the CDEV can't be used.

"Flags" is a one word field containing flags used to
enable the type of events the CDEVwants to receive. The
flag definitions are:

read rCDEVCode (1, convert) \..tw . code,-; Bit Name Enab 1 ed Event

The third and final required resource is the CDEV flags
resource (type $8019). This resource tells the Control
Panel NDA what types of events the CDEV can handle
and also contains the data rectangle, the title. the
author, and the version of the CDEV. Again, the Rez
code you need to have looks like this:

resource rCDEVFlags (1) {
flags,

);

enabled,
version,
machine,
reserved,
data rectangle,
title,
author,
version name,

Let's start at the bottom of these flags and work our way
up.

"Version Name" is an 8 character string that is dis­
played in the upper right hand corner ofthe Help I About
box that is created every time the user clicks on the Help
button.

"Author" is a 32 character string containing the name
of the author of the CDEV. This is also displayed in the
Help/About box.

"Title" is a 15 character string containing the name of
the CDEV. This is displayed with the icon in the NDA's
scrollable window and in the Help/About box.

15 thru 11 Reserved, must be zero
10 wantRun RunCDEV
9 wantHit HitCDEV
8 wantRect RectCDEV
7 wantAbout AboutCDEV
6 wantCreate CreateCDEV
5 wantEvent EventCDEV
4 wantClose CloseCDEV
3 wantlnit InitCDEV
2 Reserved, must be zero
1 wantBoot BootCDEV
0 Reserved, must be zero

Following the 3 required resources. any number of
additional resources may be used in any order you like.
(The rest of the Rez code, in this case, is templates for
the help/about screen, the menus, and the controls
used in the 1WGS CDEV.) All controls in the window
must be ··super controls' created with _NewControl2,
since the Control Panel NDA uses _TaskMasterDA to
track them. For
more information on the format ofCDEVs, refer to Apple
II File Type Note $C7 (September 1989).

Now that we have the Rez portion out ofthe way, we can
take a look at the actual code to control the CDEV. I
wrote this code (listing two) in assembly language with
Merlin 16+, but have also written CDEVs in C. and they
can be done in Pascal as well.

Whenever an event occurs in your window, the CDEV
Code resource is called "tool-style" by the Control Panel
NDA. This means it pushes parameters on the stack
and calls the CDEV similar to the way you make a
toolbox call. It is the CDEVsresponsibilityto extract the

where the controls should be created. Initialization of
parameters from the stack and fix the stack pointer the controls should be done in InitCDEV.
before it returns control back to the NDA. The parame-
ters passed are: AboutCDEV is called when the user clicks on the Help

button on the bottom of the NDA window.
Long
Word
Long
Long
3 bytes

Result
Message
Datal
Data2
RTL Address

There are 11 possible values for Message. Currently,
message three is reserved for future use as a shutdown
message. I also tried using MachineCDEV (explained
after the table) to enable or disable the CDEV depending
on whether or not a Trans Warp GS was installed, but it
didn't seem to work, so I abandoned the idea.

Here's a table of each message, and the associated data
passed with them:

Message

1 - MachineCDEV
2 - BootCDEV
3 - Reserved
4 - InitCDEV
5 - CloseCDEV
6 - EventsCDEV
7 - CreateCDEV
8 - AboutCDEV
S - RectCDEV
10- HitCDEV
11 - RunCDEV

Datal Data2

undef undef
undef undef
undef undef
wnd ptr undef
undef undef

evntrec ptr undef
wnd ptr undef
wnd ptr undef
rect ptr undef
ctrl hndJ ctrl ID
undef undef

Result

0 = inactive
undef
undef
undef
undef
undef
undef
undef
undef
undef
undef

MachineCDEV is called when the NDA is activated. This
is an ideal place to determine if the CDEV should be
displayed or not. If zero is returned in Result, the icon
is not displayed. Currently it is not possible to enable
MachineCDEV, but should be available in the future.

BootCDEV is called at boot time and should contain the
code to initialize the peripheral you are controlling (if
necessary). The icon for the CDEV will be displayed on
the bottom right of the screen for the duration of the
initialization routine.

InitCDEV is called after CreateCDEV, but before the
controls are displayed. This is where you should initial­
ize all the controls in the window.

CloseCDEV is called when the NDA window is closed or
another CDEV is selected. Housekeeping should be
taken care of in this routine.

EventsCDEV is called before the event record is passed
to TaskMasterDA, allowing you to intercept or even
change the event record before processing (if desired).

CreateCDEV is called when CDEV is selected. This is

RectCDEV is called before the window is displayed and
is used to change the
size of your display window if it needs resizing.

HitCDEVis called every time one of your controls in the
window is clicked on or "hit".

RunCDEV is called 60 times per second and is an ideal
place to update a clock display. poll disk devices for a
certain volume, or just to make sure the controls don't
need updating.

The first thing we need to do when the code is called is
set the bank register (since we don't know where we'll be
in memory), get the parameters off the stack, fix the
stack pointer, and call the proper routine. When the
routine returns, we reset the old bank and return
control back to the Control Panel NDA (lines 46-77) .

Every time the machine is booted up, the BootCDEV
routine is called (lines 106-115). The loop is used to
delay the boot process for about one second so the icon
will stay on the screen a little longer than it normally
would (this delay is not necessary and may be discarded
if you so desire). When the delay is complete, we call a
routine that verifies the existence of a TransWarp GS
(line 110) and, if so. sets the speed to maximum (lines
111-115).

As soon as our icon is clicked on in the Control Panel
NDA, a window is created with the size information we
passed the NDA in the Rez source. The NDA then
proceeds to call the CreateCDEV routine (lines 144-1 73)
which again checks for the existence of a TransWarp
GS. If the card is found. we use the window pointer
passed to us by the NDA to create all the controls in the
window (lines 161-173). If no card was found, a static
text control is created that will notify the user of the
card's absence (lines 151-158). The controls are not
actually drawn until after the NDA calls InitCDEV.

InitCDEV retrieves the handles (lines 235-251) to the
three controls that might be altered (for use by the
SetControls routine). sets up the version number and
maximum speed static text controls (lines 253-275).
and calls SetControls to initialize the remaining con­
trols. After all controls have been initialized and control
is returned to the Control Panel NDA. it makes the
controls visible and draws them.

At this time, the user can select an option from one of the
pop-up menus. When one ofthe menus is "hit" (either by

clicking in it with the mouse or pressing the appropriate
key equivalents) the Control Panel NDA calls our
HitCDEV routine, passing to it the ID and the handle to
the control. The first thing we do is verify that one of the
menus was selected (lines 286-290) and, if so, call one
of two routines (lines 291-294).

If the speed menu was selected, the SetSpeed routine
determines which item was hit (lines 306-310). loads
the speed index (lines 312-317), calls the TransWarp
ROM routine SetCuriSpeed (line 318). and calls SetCon­
trols to update the current speed static text control.
Alternately, the SetiRQ routine follows the same proc­
ess to determine if it should enable or disable the IRQ
logic (lines 331-346). These routines aren't necessary
for all CDEVs. but are required for the operation of the
TransWarp CDEV.

Set Controls determines if any of the operating parame­
ters have changed since the last time through. First it
retrieves the configuration word from the card and saves
it (lines 392-394) and checks if the IRQ status has
changed (lines 395-401). Ifthe status has changed, it
saves the new information, updates the IRQ menu, and
redraws it (lines 402-409). The next step is to get the
current speed index (line 412) . Since future versions of
the card might have more than three indices (0,1,& 2) we
ensure that the index is not greater than two (lines 413-
415).

The reason for the code segment at lines 416-421 is that
older versions of the TransWarp ROM returned a one
here whether the card was running at fast or Trans Warp
speed. All that's done is if a one is returned as the index
and the Trans Warp flag is set in the configuration word,
the index is made a two, else nothing is touched. Again,
if the index has changed, the new value is saved, the
speed menu is updated, and then redrawn (lines 428-
435) . The final task of SetControls is to determine
whether the speed has changed or not. This segment
works almost the same as setting the speed index except
it uses the numeric speed returned by GetCurSpeed,
instead of the speed index. Ifthe returned value is 2600
and the 1W flag is set, we make the speed 7000 (the
TransWarp GS returns it's operating speed in kilohertz,
so we convert the number to megahertz for displaying).

The RunCDEV routine (line 354) simply verifies that you
have a Trans Warp installed and. if so, calls SetControls
(line 357) to determine if any operating parameters for
the TransWarp have changed. This routine isn't neces­
sary, but will automatically update the screen if you
change the speed or IRQ setting from the Trans Warp GS
CD A.

The AboutCDEV routine creates a static text control in
the window created by the NDA. The icon, CDEV name,

author. version number, and OK button are automati­
cally placed in the window by the Control Panel NDA,
making life much easier on the programmer. I simply
give a very brief description on what the CDEV does and
display the key equivalents for the speed menu.

To put the entire CDEV together, follow these steps:
enter the assembly source code (listing two) and type
OA-6 to assemble and link it. If the assembly and link
completed successfully, enter the Rez code (listing one)
and the APW I ORCA command file (listing three) and
execute it. The Rez code reads the control code and
includes it in the CDEV. When the compile is done, the
CDEV is automatically copied to the proper folder for
testing. Select the Control Panel NDA from any desktop
application, click on theTransWarp icon, and away you
go.

Listing 1 - TransWarp GS CDev Rez Code

•include "types.rez"

resource rlcon
0x8000,

(1) (

20,
28 ,

1• image data •1

1• color icon
1• Height
1• Width

•I
•I
•I

$"FFFFFFFFFFFFFFFFFFFFFFFFFFFF"
$"F11111FlFFFFF1FlllllF11111FF"
$"FFF1FFF11FFF11F1FFFFF1FFFFFF"
$"FFF1FFFF1FlF1FF1FF11FlllllFF"
$"FFF1FFFF11111FF1FFF1FFFFF1FF"
$"FFF1FFFF11FllFF11111FlllllFF"
$ "FFFFFFFFFFFFFFFFFFFFFFFFFFFF"
$"FFFFFFFFF0000000000FFFFFFFFF"
$"FFFFFFFFF0EEEEEEEE0FFFFFFFFF"
$"FFFFFFFFF0EEEEEEEE0FFFFFFFFF"
$"FFFFFFFFF0EEEEEEEE0FFFFFFFFF"
$"FFFFFFFFF0000000000FFFFFFFFF"
$"FFFFFFFF0DDDDDDDDDD0FFFFFFFF"
$"FFFFFFF0DDDDDDDDDDDD0FFFFFFF"
$"FFFFFFF00000000000000FFFFFFF"
$"FFFFFFFFFFFFFFFFFFFFFFFFFFFF"
$"FFFF4444444444444FFFFFFFFFFF"
$"FFFFFFFFFFFFFFF444444444444F"
$"F444444444444FFFFFFFFFFFFFFF"
$"FFFFFFFFFFF4444444444444FFFF",

1• mask data •1

$"0000000000000000000000000000"
$"0FFFFF0F00000F0FFFFF0FFFFF00"
$"000F000FF000FF0F00000F000000"
$"000F0000F0F0F00F00FF0FFFFF00"
$"000F0000FFFFF00F000F00000F00"
$"000F0000FF0FF00FFFFF0FFFFF00"
$"0000000000000000000000000000"
$"000000000FFFFFFFFFF000000000"

) ;

$"000000000FFFFFFFFFF000000000"
$"000000000FFFFFFFFFF000000000"
$"000000000FFFFFFFFFF000000000"
$"000000000FFFFFFFFFF000000000"
$"00000000FFFFFFFFFFFF00000000"
$"0000000FFFFFFFFFFFFFF0000000"
$"0000000FFFFFFFFFFFFFF0000000"
$"0000000000000000000000000000"
$"0000FFFFFFFFFFFFF00000000000"
$"000000000000000FFFFFFFFFFFF0"
$"0FFFFFFFFFFFF000000000000000"
$"00000000000FFFFFFFFFFFFF0000"

read rCDEVCode (!,convert) "tw.code";
1• include the program •;

resource rCDEVFlags (1) (
1• required flags
for all CDevs •1

wantAbout + wantCreate + wantHit + wantinit
+ wantBoot + wantRun.

1. 1• enabled •1
15, 1• version •1
1. 1• machine •1
0. 1• reserved */
~. 0. 85, 200). 1• rect . */
" TransWarp", /* name (15 chars . max)•/
"Herb Hrowal & Palace Productionsr.

1• Author (32 chars.max) •;
"v1.5" 1• Ver name (8 chars . max) •1

);

1• "equates" for file •1

•def ne Help $1
udef ne NotFound $2
Udef ne Speed Menu $3
Udef ne IRQMenu $4
udef ne HelpText $1001
•def ne NotFoundText $2001
Udef ne SpeedMenuiteml $3001
•define SpeedMenuitem2 $3002
•define SpeedMenuitem3 $3003
•define IRQMenuiteml $4001
•define IRQMenuitem2 $4002

resource rControlList (1) (
(
SpeedMenu.
IRQMenu
)

) ;

resource rControlTemplate (Help) (
Help.
(35. 5. 130. 290).
stat TextContro 1 ((

NIL.
fCtlProcNotPtr+RefisResource.
NIL.
HelpText.
Help

))
);

resource rTextForLEText8ox2 (HelpText) (
"The TransWarp CDEV allows you to change the"
"settings of the TransWarp GS . Speed Adj ."
"sets the system"
"speed to normal. fast. or TransWarp. "
"Appletalk"
" IRQ enables or disables AT interrupts."
TBEndOfLine
TBEndOfLine
"\$11N = Normal Speed"
TBEndOfLine
"\$11F = Fast Speed"
TBEndOfLine
"\$11T = TransWarp Speed"

) ;

resource rControlTemplate (SpeedMenu) (
SpeedMenu . /* control ID •1
(23,10,35,190). /*control rect */
PopUpControl ((1• control type •1

fType2PopUp. 1• flags */
FctlProcNotPtr+FctlWantsEvents+RefisResource ,

1• MoreFlags •1

) ;

0.
0.
SpeedMenu.
SpeedMenuiteml
))

I* RefCon *I
1• Title Width •1
1• Menu ref •1
I* Initial Value */

resource rMenu (SpeedMenu) (
SpeedMenu. 1• id ofmenu */
RefisResource • MenuTitleRefShift + RefisRe­

source •ItemRefShift + fAllowCache.
SpeedMenu, 1• id oftitle string */
(SpeedMenuiteml.SpeedMenuitem2.SpeedMenuitem3

); 1• id's of items •1
) ;

resource rPString (SpeedMenu) (
"Speed Adj :

) ;

resource rMenuitem (SpeedMenuiteml) (
SpeedMenuiteml.
"N"."n". 1• key equivalents*/
0,
RefisResource•ItemTitleRefShift+fXOR.
SpeedMenuiteml

);

resource rPString (SpeedMenuiteml) (
"Normal"

) ;

resource rMenuitem (SpeedMenuitem2) (
SpeedMenuitem2.

equivalents •;
"F"."f".
0.

ReflsResource•ItemTitleRefShift+fXOR,
SpeedMenuitem2

);

resource rPStr ing (SpeedMenultem2) (
"Fast"

);

resource rMenuitem (SpeedMenultem3) (
SpeedMenultem3,
"T","t", 1• key

equivalents •1
0 ,
RefisResource•ItemT itleRefShift+fXOR+fital ic ,
SpeedMenultem3

) ;

resource rPString (SpeedMenultem3) (
"TransWarp "

) ;

resource rContro 1 Temp 1 ate (IRQMenu) (
IRQMenu, 1• control ID •1
(40,10,52 ,190) , 1• control rectangle •1
PopUpControl ((1• control type •1

fType2PopUp , 1• flags •1
FctlProcNotPtr+RefisResource,l• MoreFlags •1
0, I• RefCon •1
0, 1• Title Width •1
IRQMenu, 1• Menu ref •1
IRQMenultem1 1• Initial Value •1
))

) ;

resource rMenu (IRQMenu) (
IRQMenu, 1• id of menu •1
ReflsResource • MenuTitleRefShift + ReflsRe­

source •ItemRefShift + fRllowCache,
IRQMenu, 1• id of title string •1
(IRQMenuitem1, IRQMenuitem2);I• id;s of items

•I
);

resource rPString (IRQMenu) (
"AppleTalk IRQ :

) ;

resource rMenuitem (IRQMenultem1) (
IRQMenuitem1,

0,
RefisResource•ItemTitleRefShift+fXOR+fital ic,
IRQMenuitem1

) ;

resource rPString (IRQMenuitem1) (
"On"

) ;

resource rMenuitem (IRQMenu!tem2) (
IRQMenuitem2,

0 ,
RefisResource•ItemTitleRefShift+fXOR,
IRQMenultem2

) ;

resource rPString (IRQMenultem2) (
"Off"

) ;

resource rControlTemplate (NotFound) (
NotFound,

);

(20,20,35, 180},
statTextControl ((

))

NIL,
fCtlProcNotPtr+RefisResource,
NIL ,
NotFoundText,
NotFound

resource rTextForLETextBox2 (NotFoundText) (
"TWGS Not Installed . \n"

) ;

Ml.croDot just$ 29.95
plus 52.50 S&ll

Just 2.5K in size, but more powerful than BASIC.SYSTEM.
Imagine doing BASIC overlays simply by specifying the file
name and the line number where you want to overlay. How
about loading an array of directory names at machine lan­
guage speed. You get this and total control over ProDOS
that is impossible with BASIC.SYSTEM. Works with Pro­
gram Writer ($42.45. Both for$59.95+ S&H). Love it or get
your money back! Inexpensive publishers' licenses.

- Dealerlnqu~r~eslnvrted

Kitchen Sink Software, Inc
903 Knebworth Ct. Dept. 8
Westerville, OH 43081
(614) 891-2111

Listing 2 - Trans~arp CDEV Source Code

1
2
3
4
5
6
?
8
9

1st
XC
XC
mx
typ
use
rel
dsk

off

%00
exe
tw.macs

tw .code . 1

; include macro file
;make relocatable

;assemble to disk

10 •==•
11 • •
12 • Control code for the TransWarp CDev •
13 • •
14 • Copyright (c) 1990 •
15 • Herb Hrowal, Palace Productions •
16 • and Ariel Publishing •
1? • •
18 •==•
19
20 • •
21 •
22 • Equates:
23 •
24
25 CtlProcRefNotPtr = $1000

;more flag for extended controls
26 TitleisPtr = 0

;more flag for extended controls
2?
28 TransWarpiD = $BCFF00

; 1 ocat ion of ID. (TWGS)
29 GetTWinfo = $BCFF08

;returns with A = features, X = ver
30 GetMaxSpeed = $BCFF10 ;obvious
31 Freq2Index = $BCFF18

;converts the numerical speed to index
32 GetCurSpeed = $BCFF20 ;obvious
33 GetCuriSpeed = $BCFF28

;returns the current speed index
34 SetCuriSpeed = $BCFF2C

;sets the speed with the index
35 DisableiRQLogic = $BCFF34

;kills IRQ interrupts
36 EnableiRQLogic = $BCFF38

;enables IRQ interrupts
3? GetTWConfig = $BCFF3C

;returns info about the card
38
39
40 •
41 •
42 • This is the routine called every time
43 • an event occurs in my window
44 •
45
46 Start
4?
48
49
50
51

52
53

;get

phb
phk
plb ;let's run in my bank

lda 5,s
all the pertinent
sta Data2
lda ?,s

data

54
55
56
5?
58
59
60
61
62
63
64
65
66
6?
68
69
?0
?1
?2
?3
?4
?5
?6
??
?8
?9
80 Routines
81
82
83
84
85
86
8?
88
89
90
91
92 •
93
94 Dummy
95
96 •
9? •

sta
lda
sta
lda
sta
lda
sta
lda
sta
lda
sta
tsc
clc
adc
tcs

lda
dec
asl
tax
jsr

plb
rtl

da
da
da
da
da
da
da
da
da
da
da

rts

Data2+2
9,s
Datal
11,s
Data1+2
13,s
Message
Ls ;move RTL address and bnk
11.s
3,s
13 , s

#10 ;fix the stack pointer

Message

(Routines,x) ;do what NDA wants

;get original bank
;and return

Dummy ;MachineCDev
BootCDev
Dummy ;Reserved
InitCDev
Dummy ;CloseCDev
Dummy ;EventsCDev
CreateCDev
AboutCDev
Dummy ;RectCDev
HitCDev
RunCDev

98 • This called only at bootup . It displays
99 • icon for CDev and anything else necessary

100 • for the CDev to run. Here making it delay
101 • the boot so icon will be displayed longer.
102 • It also sets the TWGS speed to max.
103 •
104
105 BootCDev
106
10?]Loop
108
109
110

ldy
dey
bne

•20000

] Loop

;my delay

jsr FindTransWarp
;go find the

111
trans warp

112
113

;set speed
114
115 : NoTW
116
11? •

lda TWFlag
beq :NoTJ..J
jsl SetCuriSpeed

with index from Find

rts

118 ...
119 *This rtn called every time user clicks
120 * on Help btn. The title, author, & version
121 * • defined in REZ portion of the source.
122 ...
123
124
125
126
12?

AboutCDev
Pushlong
Pushlong
PushWord

•0
Datal
•2

;space for result
;window pointer

;the control is a resource
128 Pushlong •1 ; it is ID •1
129 NewControl2 ; and call it
130 pla

;remove excess baggage
131 pla
132 rts

133
134 ...
135 ...

;and get outta here

136 *This calls rtn to ck if TWGS is installed
13? * If it is, the controls are created in the
138 * window. If no TWGS exists then a msg for
139 * this condition is thrown in the window.
140 * (the MachinceCDev rtn should be used but
141 * is not yet supported by Cntrl Panel NDA).
142 ...
143
144 CreateCDev
145

146

14?

148

jsr FindTransWarp
;go find the transwarp

lda TWFlag
;let's us know if we found it

bne :Ok
;yup , we did

149 *card not found so tell user and leave.
150
151
152
153
154
155
156
15?
158
159
160
161 :Ok
162
163

164
165
166
16?
168

169

1?0
1?1

1?2
1?3

Pushlong •0
Pushlong Datal
PushWord •2
Pushlong •2
_NewControl2
pla

;space
;wnd ptr
;reference a
;resource ID
;create it

rsrc

pla
rts

;remove the garbage
;and get outta here

Pushlong •0
Pushlong Datal
PushWord •9

;reference a 1 ist of
Pushlong •1
_NewControl2

Pushlong Datal
PushWord •3

resources
; ID of 1 i st

;reference a 1 ist of pointers
Pushlong •TextCtllist

; address of 1 i st
NewControl2

pla
;pull the un-needed info from stack

pla
rts

1?4
1?5
1?6 TextCtllist
1?? adrl
1?8 adrl
1?9 adrl
180 adrl
181
182
183 VersCtl dw
184 adrl
185 dw
186 adrl
18? dw
188 dw

;moreFlags
189 adrl
190 adrl
191 dw
192
193 CurSpdCtl dw
194 adrl
195 dw
196 adrl
19? dw
198 dw

;moreFlags
199 adrl
200 adrl
201 dw
202
203 MaxSpdCtl dw
204 adrl
205 dw
206 adrl
20? dw
208 dw

209
210
211
212

;moreFlags
adrl
adrl
dw

213 VersText asc
214 VersNum asc
215

;the static text control 1 ist
VersCtl
CurSpdCtl
MaxSpdCtl
0 ;end of 1 ist

8 ;parm count
5 ;ct 1 ID
8,25,20,190 ;bounds rect
$81000000 ;stat txt control
0 ;flags
CtlProcRefNotPtr+TitlelsPtr

0
VersT ext
1?

;ref con
;textref
;length of text

8 ; parm count
6 ;ct 1 ID
5?,10,69,200 ;bounds rect
$81000000 ;stat txt control
0 ; flags
CtlProcRefNotPtr+TitleisPtr

0 ; ref con
CurSpdText ;textref
28 ;length of text

8 ; parm count
? ;ct 1 ID
?0,10,80,200 ;bounds rect
$81000000 ;stat txt control
0 ; flags
CtlProcRefNotPtr+TitlelsPtr

0 ; ref con
MaxSpdText ;textref
26 ;length of text

'TransWarp GS v'
'X.X' ,00

216 CurSpdText asc 'Current Speed = '
21? CurSpeed asc 'XX. XX Mhz. ', 00
218
219 MaxSpdText asc 'Maximum Speed = '
220 MaxSpeed asc 'XX.XX Mhz. ',00
221
222 ...
223 ...
224 ...
225 ...
226 ...
22? ...
228

!nit all controls that need it and
get hndls to cntrls that might be changed
throughout the program.

229 InitCDev
230
231
232
233
234 :Ok
235
236

lda
bne
rts

TWFlag
:Ok

Pushlong •0
Pushlong Datal

; is there a TWGS?
;yup
;else no init req'd

;space
;window pointer

237
238
23S
240
241
242
243
244
245
246
247
248
24S
250
251
252
253
254
255
256
257

258
25S

260
261
262

263
string

264
265

278

Pushlong •3 ;ID for Speed Menu
_GetCtlHandleFromiD
Pulllong SMHandle ;store the hndl

Pushlong •0 ;space
Pushlong Datal ;window pointer
Pushlong •4 ;ID for IRQ Menu
_GetCtlHandleFromiD
Pulllong ATHandle ;store the hndl

Pushlong •0 ;space
Pushlong Datal ;window pointer
Pushlong •6 ;ID for Current Speed
_GetCtlHandleFromiD
Pulllong CSHandle ;store the hndl

jsl
txa
ora
sep
sta

;store the
xba
sta

GetTWinfo ;get version• in X

a$3030 ;make text printable
$20 ; short A
VersNum+2

revision • in the string
;swap hi & lo ace

VersNum
;store version • in the string

rep $20 ;back to long A

PushWord MaximumSpd
;push max speed for the conversion

Pushlong •MaxSpeed ;pointer to

PushWord •5
PushWord •0

;length of string

;set remaining controls and return

27S .-------------------------.
280 *
281 *This is routine that is called every time
282 * the user selects a menu option .
283 *
284
285 HitCDev
286
287
288

lda Data2 ;get controls ID
sec
sbc •3

;we can only hit controls 3 & 4
cmp •2 ;bad hit?
bge : TooHigh
asl
tax

28S
2S0
2Sl
2S2
2S3 jsr (:CtlRoutines.x)

;handle the control action
2S4 : TooHigh rts

2S5
2S6 :CtlRoutines
2S7 da SetSpeed

; speed menu was hit
2S8 da SetiRQ

;IRQ Menu was hit
2SS
300 .-------------------------.
301 *
302 * Find menu item hit & set speed accordingly
303 *
304
305 SetSpeed
306 PushWord •0 ;space
307

308
30S
310

311

Pushlong SMHandle
; handle for speed menu

GetCtlValue
pla
sta Oldlndex

; get value of Ctl

; store it so the menu doesn't get

; updated in the SetControls routine
312 and •$F

;we only need the low nibble
313 dec
314 asl
315 tay ; for indexing
316 lda Spdindex . y
317 tax
318 jsl SetCurlSpeed

; set the current speed
31S
320 jmp SetControls

;update changed controls and return
321
322 Spdindex
323
324
325 *
326 *

dw 0.1. 2

327 * Set the AppleTalk IRQ status of the card
328 *
32S
330 SetiRQ
331
332
333
334

; get
335

PushWord •0 ; space for result
Pushlong ATHandle;hndl for IRQmenu
_GetCtlValue
pla

the controls value
sta OldiRQ

;store so menu doesn't get
336

updated in SetControls rout ine
337
338

33S
340
341
342
343
344

; we

345 : IRQOn
346
347

and •$F
only want low nibble

dec
beq :IRQOn ;turn on IRQ

jsl DisableiRQLogic
rts

jsl EnableiRQLogic
rts

348 .------------------------~.

349 ...
350"' This routine called every time my
351 "'CDev gets a run event. It calls rtn to
352 "' make sure cntrls display correct values
353
354 RunCDev
355
35o
357

1 da
beq

TWFlag ;TWGS in machine?
:none ;no
SetControls ;yes-update ctls

358 :none
359

jsr
rts

3o0 ,..------------------------.,..

3o1 "'
3o2"' Find out if TransWarp GS is installed.
3o3
304
3o5
3oo

FindTransWarp
stz
ldal

TWFlag ;assume no card
TransWarpiD ;get tiD bytes

3o7
3o8
3o9
370
371
372
373
374
375
37o

377

378
379

cmp
bne
ldal
cmp
bne
sta

jsl
sta
jsl

•'TW' ; must match 'TWGS'
: NoTWFnd
TransWarpiD+2
• ' GS'
: NoTWFnd
TWFlag ;found so make flag

; anything but zero
GetMaxSpeed ;get max speed
MaximumSpd ; store for later
Freq2Index
(returned in X)
•1

; make index
cpx

;old ROMs return a 1 here (wrong value)
:Ok bne

ldx •2
380 : Ok stx Spdindex+4]

;store in
: NoTWFnd rts 381

382
383 ...
384 ...
385 ...
380 ...
387 ...
388 ...
389 ...
390
391
392

index table

393
394
395

390
397
398
399

400

401

402

403
404
405

Ck cntrls that can be updated
If changed, the control is redrawn
with the correct value . If no change,
this calldoes nothing.

SetControls

: On

jsl GetTWConfig
;get the configuration word

ldy •1
sta TWConfig ; save it
and •~0000_0000_0000_1000

;check the IRQ bit (0 = on)
beq :On
ldy •2
tya
ora •$4000

;make it a menu item ID
cmp OldiRQ

; is it already set

;put it in A reg.

beq : SameiRQ
; it's already set. No

sta OldiRQ
;save for next pass

need to change

ph a
Pushlong ATHandle

40o

407
408

409

410
411
412
413
414
415

41o

417
418
419

420
421
422
423
424
425
42o
427
428
429
430
431

432
433
434
435
430
437
438

439
440

441

442
443

444

445

44o
447
448
449
450
451

452
453

454
455

; handle to control
_setCtlValue

; and set the value

Pushlong ' ATHandle
;push it again

DrawOneCtl
; and draw it

:SameiRQ

; if
:Cont

; if

; is

: NoProb

jsl GetCuriSpeed ;get speed indx
cpx •2
bl t :Cont
ldx •2

it's more than 2, just make it 2
cpx

it's a
bne
lda
and

the TW
beq
ldx

inx
txa
ora
cmp
beq
sta

ph a

•1
1 we might have to fix it

:NoProb ;for older cards .
TWConfig
·~0000_0000_0000_0100

flag set?
:NoProb
•2

; bump it for item number

•$3000 ;make it menu item ID
Oldlndex ; already set?
:Samelndex ;yup,no chg req ' d

Oldlndex ;save for nxt time

Pushlong SMHandle
;hndl for speed menu

_SetCtlValue ;set the new value

Pushlong SMHandle ; push it again
_DrawOneCtl ;and redraw it

:Sameindex
jsl GetCurSpeed

; get current speed in Khz
tax
cmp •2o00

; if it's 2o00 we mi ght need it fixed
bne :NoFix

;nope, no problem then
lda TWConfig
and •~0000 0000 0000 0100

; is the TW f 1 ag set? -
beq :NoFix

;nope, false alarm
ldx •7000

; it is an old card so make the
; speed = 7 Mhz.

: NoFix

;save

txa
;already set?
;yup, just leave

cmp OldSpeed
beq : SameSpeed
sta OldSpeed
it for nxt time through

ph a
;push it for the conversion

Pushlong •CurSpeed ;ptr to string
PushWord •5 ;length of string

456 PushWord #0
;we want an unsigned number

457
458
45S
460
461
462
463
464
465
466
467
468

lnt2Dec ;convert it

sep $20
1 da CurSpeed+3
sta CurSpeed+4
lda CurSpeed+2
sta CurSpeed+3
1 da #'. I

sta CurSpeed+2
rep $20

PushLong CSHandle

46S
470

;hndl for text ctrl
_DrawOneCtl

471 :SameSpeed
472 rts
473
474 *----------------------,*
475 *
476 * Data area
477 *
478

; short A
;make room dec

; decima l point

; long A

;draw it

47S Message ds
480 Datal ds

2
4
4
4
4
4

;msg passed to me
;data passed

481 Data2 ds
482 SMHandle ds
483 ATHandle ds
484 CSHandle ds

;current speed
485 TWFlag ds 2
486 OldSpeed ds 2
487 Oldlndex ds 2
488 OldiRQ ds 2

;data passed
;speed menu handle
;IRQ menu handle

text control handle
; is there a TWGS?

pt

48S TWConfig ds 2
4S0 MaximumSpd ds 2

;TW configuration word
;maximum speed of card

Listing 3- APW Make File

echo creating TransWarp CDev

compile tw.rez keep=TransWarp rez=(-t $c7)

duplicate TransWarp */system/cdevs/TransWarp

ZBasic Tricks

Squirreling Data
Into Aux:IDeiD (&
Elsewhere)

by Ross W. Lambert

I recently completed a very small contract program­
mingjob with some interesting implications for ZBasic
programmers. Before I dig into it, though, I'd like to
thank University of Wisconsin Professor Ron Myren
for his willingness to let me share with y'all some of the
things that I developed while under contract with him.
Although I know that recent copyright law related
court decisions have not made it necessary, I have nev­
ertheless placed these routines under copyright in
Ron's name. He has granted you folks (i.e. 8/16
subcribers) permission to use them, a gesture I find
quite refreshing. Thanks, Ron.

Prof. Myren wrote a database in ZBasic that did not
use the graphics modes- it was 80 column text only.
Since ZBasic reserves the graphics pages, the good
professor just knew there had to be away to access
that extra 16K of memory.

The professor was quite correct. The only trouble is
that ZBasic does not allow us to put arrays or other
data into the graphics pages directly. That is good, in
some cases, becase there is no hassle when you want
to jump to a graphics mode. You can do so at any time
and with no hesitation.

If you neverwant graphics, however, this situation is
a waste of memory. And 16K is a lot of real estate on
128K Apples.

All of these things meant, therefore, that I'd have to
manage the two 8K banks of memory on my own. As
things turned out, this was not very difficult at all. In
fact, the routines I developed provide the flexibility to
manage the memory as either integer, floating point,
or string arrays.

A little background: Professor Myren did not need
blazing speed for retrieving a single element out of the
extra memory space. Instead, he needed some zip for

moving an entire block of memory into the the extra
array. The length of our array management routines
was a consideration, too, hence the shorter the code the
better. For those reasons, (and for flexibility's sake) I
decided to use the built in ROM routine called
AUXMOVE, called via some in-line MACHLG state­
ments.

Call the AUXMOVErs

AUXMOVE just needs to know the address of the source
data, the address of the destination, the number of
bytes to move, and the direction of the transfer (i.e.
auxilliary memory to main or main to aux). Because
AUXMOVE will shuffle around the number of bytes you
specify, it makes managing different types of arrays
easier.

But let's begin at the beginning.

I decided to create a couple of"building block" functions
before I got too far along. Since the project called for
integer arrays, I called the two functions
Aux:PEEK_WORD and Aux:POKE_WORD. These little
gems allow us to PEEK and POKE word sized values (two
bytes) from and to aux mem at will. This is slightly
dangerous, however, because so much ofZBasic proper
lives over there. For our purposes, though, (PEEKing
and POKEing around on the graphics pages) we are in
pretty safe waters.

Admittedly, Aux:PEEK_WORD and AuxPOKE_WORD
do not do their jobs as fast as they could. However,
because they use the protean AUXMOVE routine they
can be changed to AuxPEEK_ELEMENT and
Aux:POKE_ELEMENT quite easily. In such an instance,
the length of your elements (and, hence, the amount of
data moved about) would change to match the precision
(i.e. number of bytes) of the floating point variable you
were using or the length of the strings in your pseudo­
array, etc.

The next function I created was FN BLOCKMOVE. I was
very pleased at the speed with which AUXMOVE
shuffles large blocks of memory around. This function
would be useful if you wanted to move an entire array
down into aux mem for storage, for example. By the
way, if you want to find the address of any array, use
VARPTR(Array(O)) . And remember that ZBasic puts all
of its variables in main memory. We are the ones getting
tricky by shuffling them into aux mem.

After working out the first few functions, finishing
things up was easy. FN XArray examines the parame­
ters you pass and determines whether you want to read
or write to main or aux mem. It will deposit any integer
value you wish into any element of either the main bank
array or the aux bank array.

Easy stuff.

Using FN XArray is even easier. Just think of the two
banks of memory as you would any other array. If you
want to have a look at the main mem array element
number five, you can do so by calling the function like
so:

IntValue = FN XArray (0,5,0,0)

In general, the syntax looks like this:

Int = FN XArray (Bank,Element , RdWrite,Val)

... where Bank is zero for main or a one for aux mem,
Element is the element number in the array, RdWrite is
a zero for read or a one for write, and Val is the integer
to deposit into the array on a write operation. Val is
ignored during a read, but the function itself returns
the integer read.

One ofthe nice things about using a set of functions like
these is that you don't need to calculate offsets into the
range of memory you're using. The function does it for
you. If you change the element size, however, the second
line of the FN XArray function needs to be changed to:

Offset = Element * ElementSize

Note that the function will do its work mucho faster if
you can use the bit -shift operators, changing the line
above to something like:

Offset = Element << 4

This is not possible if you have odd sized array elements,
but if speed is a very high priority, you may want
consider wasting a byte per element. Bit level multipli­
cation (i.e. in powers of 2) operates as much as 10 -20
times faster than standard integer multiplication. Of
course, if speed is that important. you will want to write
some custom assembly code that does not use
AUXMOVE.

Variations on the theme

There's a jillion ways you can mold FN XArray to better
suit your purposes. One thing I expect to do fairly soon
is amend the function so that it manages both graphics
pages as a single l6K array. This could be accomplished
by having the function deposit even numbered elements
in main mem, odd numbered elements in aux mem. Or.
faster yet, the first 8K of elements goes in main mem.
the second into aux mem.

Since I've had numerous questions of late regarding
connecting assembly code and ZBasic, and since these
functions may inspire you to try your hand at it. I
thought I'd digress a tad and discuss some of the
considerations in general terms. I'll get into more detail
next month.

If you are interested in crafting custom assembly lan­
guage code, keep in mind that your ZBasic program
code is executing in auxilliarymemory. This means that
MACHLG statements- or, more accurately, the assem­
bly code they represent- will be executing in aux mem.
too. Furthermore, remember that your routine needs to
be completely relocatable because there is no way to
predict its final address.

One alternative to MACHLGs is the dimensioned buff­
ering technique. Since ZBasic variables and arrays live
in main memory. you can dimension an array equal to
the size of your assembly routine, get its address with
VARPTR. and then BLOAD the routine into that loca­
tion. Don't forget to terminate your assembly stuff with
an RfS and to avoid making any internal references. To
use the code, just CALL Address.

Ifyou don't want to BLOAD a routine, you can always
convert the machine language hex codes to DATA
statements and then POKE them into an array. Again,
there are a few caveats: you can only POKE into main
memory and the location of your array space is not
easily nailed down. Your routine needs to be relocat­
able.

I am in the middle of experimenting with fixed position
code deposited at the start of variable space ($ACOO less
lK for each file buffer). It seems to be working but I've
not thoroughly tested it yet. Something tells me I'm
playing with fire ... my ZBasic tells me that the variable
space starts at $A336, though the manual insists that
it should be starting at $A400 ($AC00-$0800).

If you have a very short assembly routine. you can stick
it at 768 in main memory. ZBasic does not use locations
768 - 975, hence it is also available for fixed position
code.

The Future?

I love ZBasic. I develop ZBasic tools. This column
evolved from my old Znews newsletter. But there comes
a point when times and situations change. No, I'm not
going to quit writing about ZBasic. But I wouldn't be
doing my job if I blindly refused to consider other
BASICs.

The reason is simple: Zedcor is a Macintosh company
and is no longer actively developing Apple II software.
ZBasic is good. but it will not get better, at least not right
away. I can live with that - though I don't agree with it.

Micol Systems of Canada. however, has continued
improving their BASICs. both GS and 8 bit. Frankly, I
was not impressed with either version initially. But the
Micol folks stuck with it (perseverance counts. my
friends). and their BASICs (both 8 and 16 bit) have
progressed a long way. There is now a lot to recommend
them.

1\vo of the most significant advantages their 8 bit
version has over ZBasic is a wonderful editor and local
variables. Local variables make large scale and multi­
programmer development significantly easier. To be
honest and above board. I must tell you that I am now
selling Micol's BASICs, so I am not particularly unbi­
ased. In my own defense, I only sell products I believe
in - I have to operate that way because of our uncondi­
tional money back guarantee on all of our products.

But this isn't an ad. so I'll click on the close box and
close this window. After I do. I hope that you Z-fansfind
these functions - and the extra l6K of variable space
they allow you to have - quite useful.

Bonus Code

In addition to my featured listing, the Extra Array
Functions. I have tacked on a fun little routine called
PROGRESS.FN. This is a little gizmo that will draw a
thermometer-like scale in a box and update it as any
long process happens.

To use PROGRESS.FN, just insert it inside a loop or
deposit it at selected points during long calculations.
disk reads/writes. etc. I use it most when looping
through and writing array elements to disk. It's fairly
fast and doesn't slow down the process at all (well. at
least not noticeably).

The syntax looks like this:

FN PROGRESS (X,Y,Amount,Total)

X andY are the text screen coordinates ofthe upper left
hand comer of the thermometer's box. Amount is the
current status of the procedure being timed. That is,
let's say you were writing 1000 strings to disk; Amount
would be the current string you were working on. Total
is the total number of strings, calculations. etc .. that
you needed to complete. In our 1000 string example
above Total would be equal to 1000.

PROGRESS.FN displays a percentage. but you don't
need to figure it out - the function calculates it for you
automatically.

Percent Complete 50%

oro 25 % 50% 75% 100%

The PROGRESS.FN Thermometer Box

I hope you have some fun with it. PROGRESS.FN adds
a very professional touch to your code without taking up
very much space.

As will be my custom. I would like to close this column
with the three "nevers" (with apologies to Chris Stasny):

One: Never get into an argument with a programmer
about assemblers or pizza. You can't win, and you won't
even get a byte.

Two: Never confuse a ringing phone with a CALL or a
drug addict with a USR.

Three: Never. never. underestimate the power of BA­
SIC.

==Ross==

Extra Array FN listing

REM ==============================
REM ExtraArray FN
REM
REM by Ross W. Lambert
REM a Work For Hire for
REM Ron M~ren, Univ of Wisconsin
REM Copyr1ght(C) 1989
REM ==============================

REM Equates for AuxMove (Apple nomencla­
ture, IIe Ref Man . p92)

AlL
AlH
A2L
A2H
A4L
A4H

=&3C
=&3D
=&3E
=&3F
=&42
=&43

:REM
:REM
:REM
:REM
: REM
:REM

source, low byte
source, high byte
end of source, low byte
end of source, hi byte
destination low byte
destination high byte

LONG FN AuxPEEK WORD (Address)
REM source start

POKE WORD AlL,Address
REM source end (only 2 bytes)

POKE WORD A2L,Address+l
REM destination is IntVar

POKE WORD A4L,VARPTR(IntVar)
REM clc (means aux to main)

MACHLG &18
REM jsr AuxMove

MACHLG &20 , &11,&C3
END FN = IntVar

LONG FN AuxPOKE WORD (Address,Value)
REM location or integer to POKE

ValueAddr = VARPTR(Value)
REM source start (lowbyte)

POKE WORD AlL,ValueAddr
REM source end (highbyte)

POKE WORD A2L,ValueAddr+l
REM destination

POKE WORD A4L,Address
REM sec (moves mem from main to aux)

MACHLG &38
REM jsr AuxMove

MACHLG &20,&11,&C3
END FN

REM FN BlockMove - move chunks of memory
between main & aux mem

REM

REM

* If Direction= 0, then the move will
go MAIN to AUX

* If Direction <> 0, then the move
will go AUX to MAIN

LONG FN BlockMove (Dir,Start,End,Dest)
POKE WORD AlL,Start
POKE WORD A2L,End
POKE WORD A4L,Dest

REM aux to main
LONG IF Direction = 1

REM clc (move from aux to main)
MACHLG &18

XELSE:REM main to aux
REM set carry . ..
MACHLG &38

END IF

REM jsr auxmove
MACHLG &20,&11,&C3

END FN

LONG FN XArray (Bank , Element , Dir,Int)
REM binary double (2 bytes each)
Offset= Element << 1
REM calculate actual spot in memory
ElementAddr = 8192 + Offset

REM can~t look or write outside 8K
IF ElementAddr > 16383 THEN ~utr

REM write?
LONG IF Direction = 1

REM main mem?
LONG IF Bank = 0

REM if so, simple POKE WORD
POKE WORD ElementAddr , Int

XELSE :REM nope, aux mem
REM still simple! ·

FN AuxPOKE WORD (ElementAddr,Int)
END IF -

XELSE:REM no, we READing from array
LONG IF Bank = 0

IntVar = PEEK WORD (ElementAddr)
X ELSE

IntVar = FN AuxPEEK_WORD (ElementAddr)
END IF

END IF
"Out"
END FN = IntVar

REM Demo

Main = 0 Aux = 1
Read = 0 Write = 1

CLS
PRINT "To main:","To Aux:"
FOR Element = 0 TO 9

FN XArray (Main,Element,Write,Element*2)
FN XArray (Aux,Element,Write,Element*3)
PRINT Element*2,Element*3

NEXT

PRINT "From Main·" "From Aux·"
FOR Element= 0 ro'9 .

VarMain = FN XArray(Main , Element,Read , 0)
VarAux = FN XArray (Aux,Element,Read,0)
PRINT VarMain,VarAux

NEXT

PRINT "Press RETURN .. . "
INPUT R$: CLS
PRINT "Speed test 1: Writing to main array

1000 times ... "
FOR Element = 0 TO 999

FN XArray (Main,Element,Write,&FF)
NEXT

PRINT CHR$(7);"Done!"
PRINT

PRINT "Speed test 2: Writing to aux array
1000 times . . . "

FOR Element = 0 TO 999
FN XArray (Main , Element , Write,&FF)

NEXT

PRINT CHR$(7);"Done!"

PRINT
PRINT "Speed test 3 : Reading from main

array 1000 t imes ... "
FOR Element = 0 TO 999

FN XArray (Main , Element,Read,&FF)
NEXT

~RINT CHR$(7);"Done!"
PRINT
PRINT "Speed test 4 : Reading from aux

array 1000 times . .. "
FOR Element = 0 TO 999

FN XArray (Aux,Element,Read , 0)
NEXT

~RINT CHR$(7) ; "Done!"
PRINT

REM This is amazingly fast!!!

PRINT "Speed test 5 : Moving a 2000 byte
block from Aux mem to Main . . . "

FN BlockMove (1 , 8192,8192+2000, 8192)
PRINT CHR$(7) ; "Done!"
PRINT
PRINT "This completes the test"
END

PROGRESS.FN Listing

REM
REM
REM
REM
REM
REM
REM

Progress FN

by Ross W. Lambert
Copyri~ht (C) 1989
Most Rights Reserved
=========================

DIM 3 MouseText$,Norm$,Inverse$, 4 PERCENT$

inverse$ = CHR$(15)
MouseText$ = CHR$(27) + CHR$(15)
Norm$ = CHR$(14) + CHR$(24)

LONG FN PERCENT$(AMOUNT , TOTAL)
PC! = AMOUNT\ TOTAL
PC! = PC! * 100
PERCENT$= STR$(PC!)
PERCENT$ = LEFT$(PERCENT$,4) + "%"

END FN = PERCENT$

LONG FN Progress (AMOUNT,TOTAL,XPOS,YPOS)
BoxLen = 53
LONG IF FIRSTPASS = 0

LOCATE XPOS+1,YPOS
PRINT STRING$(BoxLen-1," ")
LOCATE XPOS+1,YPOS+4 -
PRINT MouseText$;STRING$(BoxLen-1,"L")
LOCATE XPOS,YPOS

FOR ZV = VPOS+1 TO VPOS + 3
LOCATE XPOS ZV · PRINT "Z"
LOCATE XPOS+Boxlen,ZV :PRINT

NEXT
PRINT Norm$;
LOCATE XPOS + 2,VPOS + 1:PRINT"Percent

complete: ";FN PERCENT$(AMOUNT,TOTAL)
LOCATE XPOS + 2,VPOS + 3
PRINT " 0% 25% 50%

75% 100%"
FIRSTPASS = 1

XELSE
LOCATE XPOS + 3,VPOS +2
BARLEN =(AMOUNT\TOTAL) * 50.0
BAR$ = STRING$(BARLEN,CHR$(32))

PRINT@(XPOS+2,VPOS+2)Inverse$;BAR$;Norm$

LOCATE XPOS + 20,VPOS + 1:PRINT FN
PERCENT$(AMOUNT,TOTAL)

IF PERCENT$ = " 100%" THEN FIRSTPASS =
0 : REM reset flag

END IF
END FN

REM Demo

MODE 2

FOR X = 1 TO 50
FN Progress (X,50,5,5)

NEXT

LOCATE 1,20
END

..................... -~
~----.. ~~~ .. -Jr.·-·. ~ ~LLOooooooooooooooooooooo - r ~~~Jrlr .. ~~·~· Jrlrlr.

The Illusion of Motion
by Steven Lepisto

Editor: Animation is one of the most enjoyable and
gratifying topics in programming. Remember the thrill
you felt when you plotted your fU"st high res shape on the
'ol II+? The IIgs has been a different story for most of us,
however. Even simple shapes aet alone movement!)
seem beyond reach.

For that reason I consider us doubly blessed to have two
of the best GS animators inAppledom willing to teach us
the art of animation. These gentlemen, Steven Lepisto
and Chris McKinsey, will not only be sharing the "state
of the art" with us, but s ince they have room to stretch out
over several months - even years - we've also given them
the .freedom to take it step by step. Best of alt I bet they'd
even be willing to handle some of your animation ques­
tions within their respective articles. ==Ross==

Animation. It is defined as the illusion of motion. It is the
process of taking a series of unmoving images and
making them appear to move. These articles will focus
on how to do animation on the Apple IIgs computer from
assembly language. It will start at the beginning with
the basics, moving on to more and more complex
concepts as we progress. I assume you have a working
knowledge of 65816 machine language and a basic

understanding of the IIgs's hardware. The basic con­
cepts of animation are independent of the computer
language used to implement them. However, since I
happen to like working in assembly language, that is the
language this article is geared towards. I use the Merlin-
16+ assembler. I've attempted to code the program to
minimize problems if you wish to convert the code to
Orca/M or APW assemblers.

The program presented here is the start of several. We
will build on this one program and it will give us a
platform on which to experiment with different tech­
niques of animation. In each new article, I will suggest
some areas in which you can experiment on your own.
I encourage your playing with the code as experience is
the best teacher.

Goals of lesson 1:

1) Get a program up and running.

2) Get two images bouncing around the screen.

a) show how motion is achieved using velocities and
positions.

b) show how to draw to the shires screen directly.

TIRED OF SWAPPING DISKS?
THEN YOU NEED A KAT HARD DRIVE!

BUILT YOUR WAY!
KAT hard drives come in industrial-quality cases that have, (115-230
volt) 60 watt power supplies, cooling fan, two 50-pin connectors and
room for another half-height drive or tape back-up unit. Also included
is a 6 ft. SCSI cable to go from the drive to your SCSI card. Now for
the good stuffi You will also receive 20 meg of freeware, shareware,
fonts, System 5.02 and public domain software.Your drive will have the
interleave and partitions set for You before the drive is exercised for
24 hours. You get all of this and a one-year parts and labor warranty!
SB 48 Seagate 48 meg 40ms $549.99
SB 85 Seagate 85 meg 28ms $698.99
SB 105 Quantum 105 meg 12ms $899.99

YOU BUILD IT!
SB CASE 2 HH Drives 7w 5h 16d $139.99
ZF CASE 1 HH Drive lOw 3h 12d $169.99
48 meg HD Seagate 40ms 3.5' SCSI $349 .99
85 meg HD Seagate 28ms 5.25" SCSI $469. 99
105 meg HD Quantum 12ms 3.5' SCSI $699.99
T-60 TAPE Teac 60 meg SCSI $449.99

WI Hard Drive $424.99
3.5" to 5.25" FRAME $12.50
CABLE 25pinto50pin6ft $19.99

50 pin to 50 pin 6ft $19.99
NEW PRODUCTS!

VITESSE Inc. Salvation
Salvation is a slick new GS/OS-based volume backup/restore program
for the IIGS. You can backup multiple, single or portions of large
block devices including hard drives, RAM drives and ROM drives to
3.5' or 5.25' disks. Do you need to stop in the middle of the backup to
get to an important file? No problem with Salvation. It remembers
where you left off and starts back up at that point. Uses the familiar
Apple Desktop Interface. $39.99

QUICKIE
Quickie is the hand-held scanner we've all been waiting for! You get
up to 400 DPI and 16 shades of gray. Watch the image apear on the
screen as you scan then import it into your favorite paint, draw or
graphics program. $249.99

COMPUTER PERIPHERALS ViVa24
The ViVa24 is a 2400 baud modem that is 100% Hayes compatible.

· Unique 'tower' design allows for better viewing of the status icons
used in place of cryptic LED's on some modems. Comes with a FIVE -
YEAR WARRANTY! $139 .99

HARRIS LABORATOIES, Inc. GS Sauce
The GS Sauce is a compact memory board that differs from most of
the rest. It uses low-power, cool-running CMOS SIMMs like the Mac.
You can use 256K or 1 meg SIMMs for a total of 4 megs. Made in the
USA. Limited lifetime warranT $79.99

~in :i i\'t1·J P*tlltt'l :lk iliJI
1 meg SIMMs 80 ns $89.99
1 meg x 1 80 ns 8 I $79.99
.IE Conserver $79.99
.IE Transwarp GS $289.99
AI Juice Plus W/1 meg $144. 99
CH PRODUCTS FLIGHT STICK $49 .99
KENSINGTON SYSTEM SAVER GS $69.99
KENSINGTON TURBO MOUSE ADB 119.99
KEYTRONIC KEYBOARK 105 KEYS ADB $139.99
BYTE WORKS ORCA/C $89.99
BYTE WORKS ORCA/M $44.99
BYTE WORKS ORCA/PASCAL $89 .99
BYTE WORKS DISASSEMBLER $34.99
CHECKMATE PROTERM 2.1 $89 .99
ROGER WAGNER HYPERSTUDIO $94.99
ROGER WAGNER MACROMATE $37.99
STONE EDGE DB MASTER PRO $219.99
GENERIC 3.5" DS/DD BULK 50 I $.69

KAT
Phone: (913) 642-4611
Or Mail Orders To: KAT

8423 W 89th Street
Overland Park, KS 66212-3039

The first thing you need to do is type the program in. If
you get the disk that goes with this issue, you are spared
the typing. For the rest of you, type the program in.
Before saving it, comment out the "use animl.macs"
line so we can build a macro file. Save the program
under the name ANIMATION!. Now, from the editor's
command box, type "mac ANIMATION l " and proceed to
build the macros. The program uses the super macros
supplied with Merlin-16+. When all the macros have
been gathered, save the file under the name
ANIMl.MACS. Then reload ANIMATION! and restore
the "use animl.macs" line.

Assemble the program with open apple-6. Ifthere are no
errors. you can run it from the disk command menu
with "=ANIMATION!". After a moment or two, you
should see a blue diamond and green square zipping
around a black screen. When you get tired of that. press
a key or the mouse button to exit. We will use this
procedure throughout the series to run the programs.

What's It Doing?

Motion of the images is achieved by the use of a change
in position applied as a vector (a vector is a line with a
direction) . This change in position vector is called
velocity. To move the image, you add the veolicty to the
current position of the image to get a new position. You
then erase the image from the old position and redraw
it at the new position. In the program. the position of the
image is represented by an X,Y coordinate (Y indicates
which row and X indicates which pixel on that row the
image is on). The velocity is broken up into two compo­
nents: the horizontal or X velocity and the vertical or Y
velocity. By adding the components of the velocity to the
proper part of the coordinates. the image can move in
any direction.

The coordinates used in the program have the origin
(where X andY are both 0) at the upper left corner ofthe
screen. Incrementing X moves to the right and incre­
menting Y moves down. So for example, to move the
image left one pixel, you add to the X coordinate an X
velocity of -1 and to theY coordinate you add a Yvelocity
of 0 (it isn't moving in that direction). To move the image
at a 45 degree angle (down and to the right one pixel).
you add an X velocity of l to the X coordinate and a Y
velocity of l to the Y coordinate.

When the image hits a boundary. it is bounced off in a
predictable way. This bouncing is achieved by inversing

the appropriate velocity (converting it from negative to
positive and vice versa). If the image hits the left or right
boundaries, inverse the X velocity. If the image hits the
top or bottom boundaries, inverse the Y velocity. This
causes the image to reflect from the boundary hit as you
would expect it to. To see the code for this, look at the
routine MOVE_IMAGES. I first add the X velocity to the
X coordinate then check that new position against the
left and right boundaries. If the image hits a boundary,
I inverse the X velocity and set the new position to that
boundary. This way. the image looks like it hits the
boundary.

One thing to note here is by adding the velocity to the
position to get a new position, the image doesn't move
through all inteiVening positions: it jumps to the new
position. This is why I set the image to the boundary
that was hit; otherwise if the velocity was large enough
it might look like the image bounced ofT an invisible
barrier in front ofthe boundary instead of the boundary
itself.

If you make the jumps small enough the eye sees
smooth motion. To give the illusion of greater speed. you
can increase the size ofthejumps. However, if the jump
is too large, the eye will not be able to track the image
well and it will look like it is skipping or stuttering. In
the program, the range of the horizontal and vertical
velocities is 0, 1, and 2. This represents the number of
pixel positions to jump each time MOVE_IMAGES is
called. The reason for the limit will be explained a little
later. If you do increase the velocities beyond 2, the
images will leave a trail behind them.

So, by adding an X velocity to the X coordinate, you
cause the image to move left or right and by adding a Y
velocity to the Y coordinate, you cause the image to
move up or down. Adding both velocities at the same
time causes the image to move in other directions. By
increasing the velocity, you increase the apparent
speed of the image. That's pretty much all there is to
moving an image on the screen.

How's It Doing It?

Animation on a computer is generally not a simple
thing. The basic steps of motion are:

1) Draw image at the specified coordinates
2) Update the coordinates with the velocity
3) Erase the image from the original coordinates

4) Draw the image at the new coordinates

This process needs to be done in such a way that the eye
sees only the change in position of the image (which
gives the illusion of motion). If the erasing step becomes
visible, the eye will see that and the illusion will be
interrupted. This phenomenon is called flicker. The goal
of animation on the computer is to eliminate flicker for
flicker is a Bad Thing (unless you want it for an effect­
for now, we don't).

There are many techniques for eliminating flicker and
we will discuss several of them in coming installments.
The technique I'm using in the program is the simplest:
combine the erasing and drawing steps so the image is
never completely invisible to the eye. This technique
only works on a background that is mono-colored (in
this case, black) . Notice how the images are defined in
the source code. See the border of O's around the
images? That border is the same color as the back­
ground so if you draw the image then redraw it shifted
to one side, the border will erase that part of the old
image not overlapped by the new. This is how to
combine the erase and the draw.

There are advantages and disadvantages to this
method.

The advantages are:

1) Speed. Things go a lot faster if you don't have to worry
about preseiVing the background.

2) The amount of memory needed to store the graphics
can be lessened significantly over other techniques. For
example, one technique for preseiVing the background
requires the use of an image mask which eliminates the
erasing border by making it essentially transparent
(and yes, this does mean another way is needed to erase
the background). However, having a mask for every
image will double the amount of memory required to
hold the images.

The disadvantages are:

1) Images can't overlap. If they do, the border not only
erases the old image but the image being overlapped.
You can see this occasionally as the blue diamond
passes over the green square.

2) The background must be the same color as the
erasing border (or vice versa). This tends to limit the

background graphics quite a bit.

3) You can't use too large of a velocity otherwise the
image will be displaced too far for the erasing border to
have an effect. And if you want large velocities. you can
add a larger erasing border but then you start spending
more and more time drawing the image to the screen as
it gets larger and larger and more and more of that time
is spent in erasing. You need to draw the line at some
point. In this program the width and height of the
erasing border is 2 pixels. This is why you shouldn't
increase the velocities in the program past 2: you will
displace the image more than two pixels and the erasing
border won't work.

In Conclusion

So. that's all this program is really doing: adding
velocity components to coordinates and drawing
images at those coordinates. This is the essence of
animation. the Illusion of Motion.

Things To Experiment With

There are a number of things to play with in this
program. By all means. feel free to experiment beyond
the suggestions.

l) In the routine ANIMATE. there is a call to
PAUSE_A_MOMENT. Increase or decrease the value
being loaded into the A register to slow down or speed
up the overall motion. Set the A register to 0 to get the
fastest motion. Slowing down the action can get you a
better look at the images' motions.

2) If you wish. you can try adding more of the basic
images to the display. First. modify the constant MAXI­
MAGES to the number of images you want. Then. at the
end of INIT_IMAGES. modify the default arrays to add
more images. Make sure you don't add more images
than are allowed by MAXIMAGES. Also. make sure
every default value is filled in for all images.

3) Try changing the motion boundaries to smaller
values. Be sure the default starting positions of the
images are within the motion boundaries (the images
won't erase properly the first time through if they start
outside the boundaries).

4) If you are feeling really ambitious. try adding a whole

new image by "drawing" it in source code. Don't forget
to modify the default arrays to reflect the size ofthe new
image. And make sure the image is an even number of
bytes wide.

5) Finally. notice how I determine the location and size
of the super hires screen. This technique allows me to
easily adjust to changing conditions. It even allows me
to run the program in 640 mode if the images were
modified properly.

Listing 1 - Illusions of Motion

1
2
3
4
5
6
7
8
9

10
11

lst
rel
typ
dsk

XC

XC

mx
cas
use

off

s16
an i mat ion 1 . 1

~00
in
anim1 . macs

;65816 mode
; full 16-bit regs

12 •==
13 • Illusions of Motion
14 • by Stephen P. Lepisto
15 • date : 1/22/90
16 • Assembler : Merl in-16+ v4 . 08+
17 •===
18
19 • Direct page definitions
20
21
22
23
24
25
26
27

dum
deref_ptr ds
screen_ptr ds
rowadrs table
i mage_ptr ds

dend

$00
4
4

ds 4
4

28 • # of images that can be handled
29
30 MAXIMAGES =
31

2

32 •==
33
34 Start
35

phk
plb

36
37
38
39
40
41
42

jsr
bcs

do startup
shutdown

jsr Animate
shutdown jsr doshutdown

_Quit quitparms
brk $de

43 •

;err in startup

;shouldn't break

44 • Main loop where it all happens .
45

jsr init_images; init image arrays 46 Animate
47 jsr init_boundaries ;for motion

:event_loop jsr draw_images ;draw all images 48
49
50

jsr move_images ;move all images
lda •1 ; do a short pause

51
52
53
54
55
56 ...

jsr
jsr
bee
rts

pause_a_moment
read_key
:event_loop ;no key pressed

5? *Apply velocities to images to make move.
58 * Bounce off motion boundaries as needed.
59
60
61
62
63

move_images stz image_index
:move_loop lda image_index

asl

64
65
66
6?
68
69
?0 :1
?1
?2
?3 :2
?4
?5
?6
??
?8
?9
80
81
82
83 : 3
84
85
86
8?
88
89
90
91 :4
92
93
94 :5
95
96
9?
98
99

100
101
102
103
104 :6
105
106
10?
108
109
110
111

tax
lda
clc
a de
bmi
cmp
bcs
jsr
lda
bra
ph a
clc
adc
cmp
pla
bee
jsr
lda
sec
sbc
sta

lda
clc
a de
bmi
cmp
bcs
jsr
lda
bra
ph a
clc
a de
cmp
pla
bee
jsr
lda
sec
sbc
sta
inc
lda
cmp
bee
rts

xposition,x

xvelocity,x
: 1 ;way past left
left_boundary
:2 ;not on left edge
invert_xvel ;else bounce it
left_boundary
:2

image_width,x
right_boundary

:3 ;not on right edge
invert xvel ;else bounce it
right_boundary

image_width,x
xposition,x

yposition , x

yvelocity,x
:4 ;way above top
top_boundary
:5 ;below top edge
invert_yvel ;else bounce it
top_boundary
:6

image_height,x
bottom_boundary

:6 ;above bottom edge
invert_yvel ;else bounce it

bottom_boundary

image_height,x
yposition,x
image_index
image_index
number_of_images
:move_loop

112 *Invert X velocity for illusion of bounce .
113
114
115
116

invert_xvel lda xvelocity,x
eor •$ffff
inc

11?
118
119

sta
rts

xvelocity,x

120 * Invert~ velocity for i llusion of bounce.
121
122 invert_yvel lda yvelocity,x
123 eor •$ffff
124
125
126
12?
128 ...

inc
sta
rts

yvelocity,x

129 *Draw all images at current pos on screen .
130

draw_images stz image_index
:draw_loop lda image_index

asl

131
132
133
134
135
136
13?
138
139
140
141
142
143
144
145
146
14?
148
149
150
151
152
153
154
155
156 ...

tax
asl
tay
lda
sta
lda
sta
lda
sta
lda
sta
lda
sta
lda
sta
jsr
inc
lda
cmp
bee
rts

image_bytewidth,x
plot_bytewidth
image_height,x
plot_height
xposition,x
plot_xpos
yposition,x
plot_ypos
image_adrs,y
image_ptr
image_adrs+2,y
image_ptr+2
plot_image
image_index
image_index
number_of_images
:draw_ loop

15? * Set up motion boundaries to shires screen.

init_boundaries
158
159
160
161
162
163
164
165
166
16?
168 ...

stz left_boundary
lda shires_width
sta right_boundary
stz top_boundary
lda shires_height
sta bottom_boundary
rts

169 * Initialize variables showing & moving
1?0 * images across the screen .
1?1
1?2 init_images ldx •0
1?3 :1 lda def_velx,x
1?4 sta xvelocity,x ;X velocity
1?5 lda def_vely,x
1?6 sta yvelocity,x ;~velocity
1 ?? 1 da def _posx, x
1?8 sta xposition,x ;starting X
1 ?9 1 da def _posy, x
180 sta yposition,x ;starting ~
181 lda def_width,x
182 sta image_width,x ; in pixels

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

lda
sta
lda
sta
txa
asl
tay
lda
sta
lda
sta
inx
inx
cpx
bee
txa
lsr
sta
rts

def_bytew idth,x
image_bytewidth, x ; in byt es
def_he ight , x
image_height , x ; in scan 1 ines

def_ image , y
image_adrs,y ;addr
def_image+2,y
image_adrs+2,y

•MAXIMAGES*2
: 1

number_of_images

of image

203 *Defaults. Note that veloc ities should never
204 *be> 2 : images will l eave trails otherwise .
205
206
207
208
209
210
211
212
213
214
215 •

def velx da 1, -2
def=vely da 1, -2
def_posx da 4 , 300
def_posy da 10,100
def width da 16,16
def=bytewidth da 8 , 8
def_height da 15, 15
def_image adrl bas ic_image_1,bas ic_ image _2

216 • Put byte-oriented image onto shires scrn .
217 • Assumes image is even • of bytes wide .

plot_image lda
asl
tay
lda
lsr

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242 : 1
243
244
245
246
247
248

clc
a de
sta
lda
sta

:row_loop ldy
:byte_loop lda

sta
iny
iny
cpy
bee
lda
clc
a de
sta
bee
inc
lda
clc
a de
sta

dec
bne

plot_ypos
; 'Y - > index

plot_xpos
; pixels to bytes

wowadrs_table],y
screen_ptr
sh ires_adrs+2
screen_ptr+2
•0
[i mage_ptr] , y
[screen_ptr] , y

plot_bytewidth
:byte_ loop
image_ptr

plot_bytewidth
image_ptr
: 1
image_ptr+2
screen_ptr

shires_byte_width
screen_ptr

plot_height
:row_loop

249
250
251
252
253
254
255
256
257
258
259
260
261

rts

.----------------------------
• Find s ize of sh ir es screen and where i t is .
• Also , determine where row address table is .
• Th is r tn takes advantage of defau l t port
• when QuickDraw fi rst starts up .

plot_setup -oetPortLoc •shiresl oc info
-oetAddress •1
pulllong rowadrs_table
rts

262 •
263 • Start up some too l s needed for pr ogram.
264 •
265 • Output :
266 • carry : set if some sort of e r ror occured
267
268
269
270
271
272
273
274
275
276

dostartup _TLStartUp
_MTStartUp
- MMSta r t Up
p l a
sta
c l c
a de
sta

ProgramlD

•$100
Pr ivatelD

277 • Get direct page for Qu ickDraw ($300 worth) .
278
279
280
281
282
283
284
285
286
287
288
289
290
291 : X

292

-NewHandle #$300 ; Program l D; •$c015;#0
pul l long deref_ptr
bcs :x
1 da [deref _ptr]
ph a
pushwor d •0 ; 320 mode
pus hword •0 ;screen width
pushword Pr ogramiD
_QDStartup
bcs :x
jsr plot_setup
clc
rts

293 • Shut down tools started and d ispose of any
294 *private memory we may have allocated.
295
296
297
298
299
300
301
302

doshutdown QDShutDown
-oTsposeAll PrivateiD
-MMShutDown ProgramiD
_MTShutDown

TLShutDown
rts

303 •
304 • this fn returns ascii key val if available
305 • else it returns a zero .
306 •
307 • Output :
308 • Carry: set i f key pressed (key in A.reg) .
309
310 keyboard =
311 keystrobe =
312
313 read_key sep

$e0c000
$e0c010

•$20
314 ldal keyboard

315
316
317 :X
318
319
320
321
322 ...

bpl
stal
rep
and
cmp
rts

:x
keystrobe
•$20
•$ff
•$80

323 "' Do a short pause.
324 ...
325 "' Input:
326"' A.reg:# of 5000th sec intervals to wait.
327
328 gs_speed_control = $e0c036
329
330
331
332

pause_a_moment
tax
beq

333
334
335
336
337
338
339
340
341 :wait
342
343
344
345
346
347
348
349 :X
350

sep
ldal
and
sta
ldal
and
stal
rep
jsr
dex
bne
sep
lda
oral
stal
rep
rts

: X ;0=no de lay
•$20
gs_speed_control
•$80
old_speed
gs_speed_control
•$7f
gs_speed_control
•$20
wait

:wait
•$20
old_speed
gs_speed_control
gs_speed_contro l
•$20

351 "' Typical wait loop, waits for . 005 sec
352
353 wait
354
355 :1
356 : 2
357
358
359
360
361
362
363
364
365
366 ...

sep
lda
ph a
sec
sbc
bne
pla
sec
sbc
bne
rep
rts

#$20

•1
: 2

#1
: 1
•$20

367"' variables .
368
369
370
371
372
3?3
3?4
3?5
376

quitparms adrl 0
da $0000

ProgramiD ds 2
PrivateiD ds 2
number_of_images ds 2
image_index ds 2
o 1 d_speed ds 2

;not restartable

; # of images
; 1 oop index

377 "' Motion boundaries (in pixels)
378
379 left_boundary ds 2
380 right_boundary ds 2

381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
39?
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446

top_boundary ds 2
bottom_boundary ds 2

"' Plot_image inputs .

plot_ypos ds 2
p 1 ot_xpos ds 2
plot_height ds 2
plot_bytewidth ds 2

"' Screen location record .

shireslocinfo
portSCB ds 2
shires adrs ds 4
shires:byte_width ds 2

ds 4
shires_height ds 2
shires_width ds 2

"' Image arrays

;space filler

xposition ds MAXIMAGES"'2
yposition ds MAXIMAGES"'2
xvelocity ds MAXIMAGES"'2
yvelocity ds MAXIMAGES"'2
image_height ds MAXIMAGES"'2
image_width ds MAXIMAGES"'2
image_bytewidth ds MAXIMAGES"'2
image_adrs ds MAXIMAGES"'4

... ---------------------------
"'Basic images, ea 16 pxls(8 bytes)wide by 15
"'1 ines hi .Plot_Image assumes even byte width

bas ic_image_1 hex 0000000000000000
hex 0000000000000000
hex 000aaaaaaaaaa000
hex 00aaaaaaaaaaaa00
hex 00aaaaa00aaaaa00
hex 00aaaa0000aaaa00
hex 00aaa000000aaa00
hex 00aa00000000aa00
hex 00aaa000000aaa00
hex 00aaaa0000aaaa00
hex 00aaaaa00aaaaa00
hex 00aaaaaaaaaaaa00
hex 000aaaaaaaaaa000
hex 0000000000000000
hex 0000000000000000

basic_i mage_2 hex 0000000000000000
hex 0000000000000000
hex 0000000440000000
hex 0000004444000000
hex 0000044444400000
hex 0000444444440000
hex 0004444444444000
hex 0044444444444400
hex 0004444444444000
hex 0000444444440000
hex 0000044444400000
hex 0000004444000000
hex
hex
hex

0000000440000000
0000000000000000
0000000000000000

Our Very Own Stuff
• 8/16 on Disk •
The magazine you are now holding in your hands is but a subset of the material on the 8 I 16 disk. We have combed
the BBS's and data services across the country to collect the best of the public domain and shareware offerings
for programmers. Not only that, but we have extra articles and source code written by our stalT. With DLT16 and
DLT8 (Display Launcher Thingamajigs) to guide you, you can read articles. display graphics, and even launch
applications.

l year - $69.95 6 months - $39.95 3 months - $21

• Shem The Penman's Guide To Interactive Fiction •
Tom Weishaar said it best in the October '88 edition of Open-Apple (now A2-CentraD:

"[This) .. .is one ofthoese rare educational software packages that does things in the classroom with a computer
that can't be done any other way. It's the foundation for a semester long course ... Like all the best educational
software, Shem the Penman's Guide comes with a student manual on disk, where it can be shortened.
lengthened, or otherwise modified ... "

Tom forgot to mention that this is a terrific introduction to writing interactive fiction for programmers, too.
Author Chet Day is a professional writer (go buy Hacker at your nearest book store!) and an educator who is as
conerned with the content of your interactive fiction program as with the form. This package is fun, entertain­
ing, and useful. It includesApplesoft. ZBasic, and MicolAdvanced Basic "shells" which will drive your creations
- $39.95 (both 5.25" and 3.5" disks supplied) . P.S. The advantage to the ZBasic and Micol versions is that with
the easy integration of text and graphics provided in those langauges, you can easily load a graphic and overlay
text in the appropriate spots.

• ProTools™ •

Fast approaching its first birthday, our ProTools library for ZBasic programmers has grown into a mature and
powerful product. It's bigger than ever, too. inCider's Joe Abernathy called it, " ... the only way to go for ZBasic
programmers."

ProTools includes a text based and a double high resolution graphics based desktop interface (pull-down menus,
windows, mouse tracking, etc.) Both desktops support quick-key equivalents for menu items. too! We've added
a third desktop package in version 2. 5 ofProTools, too. This one is mouseless. meaning that it is entirely keyboard
driven and therefore much more compact than its predecessors.

Mr. Ed, our "any window" text editor, will provide Apple Works™ command compatible text editing in the screen
rectangle of your choice. With no limit to edit field length, Mr.Ed is like having a word processor available as
part of your program Our newest version of Mr.Ed will even scroll the window if you want to support edit fields
longer than your designated rectangle!

ProTools contains literally scores of additional functions and routines, including:

• FRAME.FN • SMARr.INPUf.FN • SCROLL. MENU .FN
• GETMACHID • GETKEY.FN • SCREENDUMPSO
• SA VE_SCREEN • DIALOG • CRYPT
• DATETIME • BARCHARf • LINE GRAPH
• ONLINE • PASSWORD • READTEXT
• SETSPEED •VERfMENU •PATHCK

ProTools is $39.95 (5.25" and 3.5" disks supplied).

NOTE: If you are already a ProTools owner. be sure and send us a blank disk and a SASE so that we can give
you your free update. The new additions and bug fixes make it very worthwhile!

• Zlndex • (NEW! - and shipping)
If you need to write a database in ZBasic (or any other BASIC that supports multi-statement functions). Zlndex
is the mechanism that will free you from the memory restrictions imposed by 128KApple II's. Zlndexmanages
B+ Tree indices for the key fields of your choice (it creates an index file for each key field). You can look up records
in virtually any order with nearly RAM speeds, even though your data files are disk based.

Zindexsupports up to 65535 records and can perform key insertions, deletions, finds. find next. find previous,
find first. find last. and find with record. The function can be used to index an existing database or a new one.
It can also index unique keys or non-unique keys.

Zlndexretails for $39.95 and is shipped with both 3.5" and 5.25" disks. (Note: The current version is written
specifically for ZBasic. Conversion to other BASICs may involve some translation.)

• Micol Advanced Basic •

Micol Systems , Canada has produced two BASICs that should be of interest to anyone looking to empower their
Apple II. Micol Advanced Basic Ile/Ilc is for 128K Apples, and Micol Advanced Basic GS is for the Apple ngs.
One of the many features that recommend these two are that the GS version is upwardly compatible with lie/
lie version. This means your 8 bit software can be quickly ported to the GS and almost immediately take
advantage of the additional speed. memory. and graphics modes of the machine.

Both versions integrate graphics and text with equal ease, and both versions also provide local variables, multi­
statement functions, terrific editors, multi-parameter subroutines, structured loops, and just about anything
else a mature, modem language should have. The GS version has recently been extended to provide a simple
interface for the creation of desktop-based programs.

MAB Ile/Ilc $69.95 MAB GS $99.95

Our guarantee: Ariel Publishing guarantees your satisfaction with our entire product line (software and
publications) . If you are ever dissatisfied with one of our products. we will cheerfully refund the amount you
paid on your request. Furthermore, we will ship the software packages to you on 30 day approval, meaning that
you'll not have to pay until you've had the stuff for nearly a month. Of course, we take checks, VISA and
MasterCard up front. too. Just write to: Ariel Publishing, Box 398, Pateros, WA 98846 or call (509) 923-2249.

Thein's the BRKs:
Relocation in 8 bit assembly
by Jeny Kindall. 8-bit Editor

I had the pleasure of meeting Bob Sander-Cederlof at
the A2-Central Develpper Conference last July in Kan­
sas City. Bob brought with him to the conference a
number of leftover Apple Assembly Lines back issues.
and was giving them away to anyone who wanted them.
In the resulting feeding frenzy. I managed to snatch a
nearly complete set. I'd been a deprived child; I'd heard
of AAL but never actually seen an issue. Now I know
what I was missing.

One interesting article, published way back in June of
1982, was entitled "Implementing New Opcodes Using
BRK" and demonstrated how to use the BRK opcode to
tie machine-language routines into your programs as if
they were new opcodes. The three new opcodes de­
scribed in the article were designed to help you to write
completely relocatable code. However, the BRK handler
was required to be at a fixed address (instead of being
relocatable along with the rest of the program). and the
three new instructions. while useful, offered only rela­
tive JMP, JSR. and LEA (load effective address).

I thought it would be fun to generalize Bob's idea into a
multipurpose relocation routine. (OK, so my idea of
"fun" is a little strange.) My variation on this theme
allows you to turn any three-byte 6502 opcode into a
relocatable instruction by preceding it with a BRK
opcode. The run-time relocator can also handle imme­
diate-mode instructions that load a register with an
address, an addressing mode which has traditionally
been the bane of relocatable programming.

Add some macros. and it's almost as if the 6502
suddenly sprouted a whole new relative addressing
mode. Programs written with the run-time relocator
can be loaded and run at ANY address. without modi­
fication.

The Code

Rather than trying to start out by explaining how the
program works and how to use it, I'll give you the code
first and then try to explain it. There's no need to

assemble this code; it's designed to be used as a Merlin
Pur file . Save it to disk as RTR.

Listing 1

1 1st on
2 ***
3
4
5
6
7
8
9

Run-Time Relocator
by Jerry Kindall

for 8/16
Merlin 8 Assembler

10 ***
11 1st off
12
13 org $800
14
15 *Install BRK handler by finding current run
16 *addr of this routine and stor ing it into
17 *the BRK vector at $3F0-$3F1
18
19 RTR php ;save ress on stack
20 pha
21 txa
22 pha
23 tya
24 pha
25 1 da $3F0

;save current BRK vector
26 pha
27 lda $3F1
28 pha
29 :getadr jsr $FF58 ;call known RTS
30 tsx

;un-pop address onto stack
31 dex
32 dex
33 txs
34 pla

;figure low byte of BRK handler
35 clc
36 adc •RTR_PROC-:getadr-2
37 sta $3F0
38 pla

;figure hi byte of BRK handler
39 adc #/RTR_PROC-:getadr-2
40 sta $3F1
41 pla

;get old BRK vector
42 brk

; and save in hold area

43 sta RTR_OLDB+l
44 pla
45 brk
46 sta RTR_OLDB
47 pla

; restore a l l registers
48 tay
49 pla
50 tax
51 pla
52 plp
53 brk
54 jmp RTR_CONT

;continue with program
55
56 RTR OLDB - ds 2

;hold area for old BRK vector
57
58 >I<

59 >I<

60
61
62
63
64

Process BRK reqst by relocating 3-byte
instruction following the BRK .

>I<

*Special case opcodes : BRK (00)= a real BRK,
*NOP (EA) = immediate mode relocation

65
66
67
68
69
70
71

72

RTR PROC sec

: 0

-;point $3A to BRK
lda $3A
sbc •2
sta $3A
bcs :0
dec $38
ldy •1
lda ($3ALy

;get opcode
beq :brk

; it 's a REAL BRK
cmp •$EA
bne :adjust

73
74
75
76
77
78
79
80

*Adjust 2 immediate (2-byte) instructions

81
82
83

iny
iny
sec

; subtract out assembly
l da ($3AL y
sbc # :proc
tax

;save low byte
84 iny

;subtract out hi byte
85 iny
86 lda ($3A),y
87 sbc #/ :proc
88 pha

;save hi byte
89 dey

;add in runtime address
90 dey
91 clc
92 txa
93 adc $3F0
94 sta ($3A) , y

;modify low byte
95 iny

address

96
97

98
99

100
101
102
103
104
105
106
107
108
109
110

111
112
113

114

115
116
117

118

119
120
121
122

123
124

125
126

127
128

129
130
131

132
the
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

iny
pla

;add in hi
adc
sta

;modify hi
clc
bee

byte
$3F1
($3A), y
byte

: goback

* Handle BRK instruction

:brk jmp $FA59 ; do a REAL BRK

* Adjust absolute (3-byte) instruction

:adjust iny
sec

; subtract out assembly address
l da ($3ALy
sbc # :proc
tax

; save low byte
iny

; subtract out hi byte
lda ($3ALy
sbc #/ :proc
ph a

; save hi byte
dey

; add in runtime address
clc
txa
adc $3F0
sta ($3ALy

; modify low byte
iny
pla

;add in hi
a de
sta

;modify hi

byte
$3F1
($3ALy
byte

:goback
; NOP

ldy #0
out the BRK

lda •$EA
sta ($3ALy
jsr $FF3F

; restore registers
jmp ($3A)

instruction
;go do

*Routine to deinstall Run-Time Relocator
*Call using BRK followed by JSR RTR_DINS
* No registers are changed

RTR_D INS php
ph a
brk
lda RTR OLDB
sta $3F0
brk
lda RTR OLDB+l
sta $3Fl
pla
plp

148 rts
149
150 RTR_CONT
151 lst on

Using The Relocator

To include the run-time relocator in your own pro­
grams, all you need to do is include a Pur RrR as the
first statement in your source code. Do NOT include a
REL or ORG statement. If you wish to assemble to disk,
include the DSK psuedo-op before the PUT RrR.

In your program, insert a BRK opcode before each
absolute or absolute indexed instruction which refer­
ences an address within your code. You can insert a
BRK before ANY three-byte instruction- JSR. JMP.
EOR, LDA. or even BIT. Here's a simple example using
this capability.

Listing 2

1
2
3
4
5
6

7
8
s

10
11

12
13
14

15

put rtr

cout $FOEO

start ldx •0 ; set index to zero
brk

;relocate
loop 1 da

beq
jsr
inx

next instruction
text . x ;get character
exit ;end of string
cout ;print character

;pt to next character
bne loop

;always (when string <255 chars)
exit rts

text asc "This is an example run-time
relocation program . "

hex 8000

Checkout the BRK instruction in line 6. When that line
is executed, the run-time relocator gets control and
patches the next statement to work at the program's
current address. The BRK opcode is replaced with a
NOP so the relocator won't erroneously adjust the
already-corrected instruction the next time it's exe­
cuted.

Line 9's JSR is NOT preceded by a BRK instruction.
That's because COUT is not a location within your
program: it's an absolute ROM location. You definitely
don't want to mess with the address of a call to the ROM.
Only instructions which reference locations within your
program should be preceded by a BRK. Also remember
that branching instructions (BNE. etc.) are already

relocatable and do not need to be prefaced with a BRK.

Note that the BNE instruction in line 11 branches back
to line 7, not line 6 . The first time line 6 is executed, it'll
be replaced with a NOP instruction - so there's no
reason to branch back to a NOP the next time through.

Immediate Mode Instructions

As I mentioned earlier, the run-time relocator has the
ability to adjust immediate-mode instructions as well.
Here's a short example of that:

Listing 3

1 put rtr
2
3 prntax $FS41
4 cout $FOEO
5
6 start lda #"$" ;print dollar sign
7 jsr cout
8 brk ; relocate
s nop ;effective address

10 lda #rtr
; get address of relocator

11 ldx #/rtr
12 jsr prntax ;print in hex
13 lda #$80 ;print CR
14 jsr cout
16 rts

The purpose of the above code is to print the run-time
address of the program (in hex notation) on the screen.
Note that line 8's BRK is followed in line 9 by a NOP. This
is a special flag to the run-time relocator that two
immediate mode instructions follow. This is similar to
the "effective address" mode on some other processors.
(In fact, I chose NOP as the effective address flag
because its hex code is EA- an acronym for effective
address. Some might call this pretzel logic.)

In line 10, we load the Accumulator with the low byte of
the label RTR: in line 11 . the high byte of the same label
is loaded into the X register. The label RTR is defined in
the relocator source code (see line 18 ofthe first source
listing) as the beginning of the executable code. The
run-time relocator will assume that the operand of the
first instruction is the low byte of an address. and the
operand of the second is the high byte of the same
address. So this sequence of instructions loads the
Accumulator and the X-registerwith the address ofthe
first instruction in the program, adjusted for the
program's run-time address.

Notice that (in line 13) we load the accumulator with a
constant number. $8D is the code for a carriage return,
and should remain constant no matter where in mem­
my the program runs.

This feature of the run-time relocator is designed for
loading both bytes of an address into a pair of registers.
If you just need to load the high byte of an address. you
can do something like this:

10
11
12
13

brk
nop
lda •label ;load low byte
lda #/label ;& replace w/hi byte

You must specifY the same label in lines 12 and 13 so
that the relocator can properly adjust for code that isn't
on a page boundary. To get the low byte only, try this:

10
11
12
13

brk
nop
lda •label ; load low byte
bit 0 ;do almost nothing

The BITO in line 13 will get adjusted. but notice that it's
a page zero instruction, not an immediate instruction.
The relocator doesn't care and will adjust its operand
anyway; thus. the BIT instruction will operate on some
arbitrary location on page zero, changing your Negative
and Zero status flags but leaving the actual value in the
accumulator unchanged.

Really Breaking

If you really want to execute a BRK instruction. just
include two of them in a row, like this:

50
51

brk
brk

;come to a screeching halt

This will bring your program to a stop in the Monitor
with a program counter and register display. You'll
notice that the program counter has been adjusted to
point to the first BRK instruction. rather than two bytes
past that address as it usually does when a BRK is
executed.

De-installing the Run-Time Relocator

Sometime before your program ends, you'll probably
want to disconnect the run-time relocatorfrom the BRK
vector and reconnect the standard Apple BRK routine

(or whatever BRK-handler was active when the run­
time relocator began execution) . A relocatable JSR to
RfR_DINS will do the trick for you:

60
61

brk
jsr RTR_DINS

;de- install RTR

Remember, you won't be able to use the run-time
relocator after de-installing it, so be sure that you really
are getting ready to exit your program before calling
RfR_DINS. RfR_DINS does not change any registers.

How It Works

The run-time relocator uses five global labels: RfR,
RfR_OLDB, RfR_PROC, RI'R_DINS, and RfR_CONT.
All the rest are local labels, and in several places I used
hex addresses instead ofEQU'd labels. The goal was to
be able to PUT the code without having to remember
what labels I had "used up" in the relocator.

The run-time relocatoruses some tricky code, but really
isn't that complex. The main keys to understanding
what is going on are the ORG $800 statement (line 13),
which specifies where the program is "set up" internally
to run, and some knowledge of how the BRK handler
works. When a BRK instruction is encountered, the
6502 jumps to the NMI handler in the Monitor. The
Monitor saves the program counter and all registers.
then decides whether the interrupt was caused by a
BRK instruction or an actual NMI, and passes control
to the appropriate handler through a page 3 vector. We
can take advantage of the saved information in our BRK
handler, and we can use any registers we like as long as
we call the Monitor routine to reload the registers before
we exit. With this information in mind, let's look at the
program's main "chunks" of code.

Lines 19 through 54 are what gets executed when you
run your program. First, all registers and the current
contents of the BRK vector are saved on the stack. Line
29 calls a known RI'S instruction in the ROM, then lines
30-33 adjust the stack pointer so the return address
can be retrieved with PI.As. The return address is
adjusted to point to our BRK handler, then stored into
the BRK vector (lines 34-40). The old contents of the
BRK vector are then pulled off the stack and stored into
RfR_OLDB, using the run-time relocator itself to do the
dirty work of relocating the STA instructions. Finally,
in lines 47-52, the registers are restored, and the main
program (which begins at RfR_CONT) is entered via a
relocatable JMP instruction, again using the run-time

relocator.

Lines 64-74 are the main BRK handler routin~. The
very first thing the relocator does is to back up the
program counter ($3A-$3B) by two bytes. because the
BRK instruction always generates a return address two
bytes past the BRK. In lines 70-7 4 I handle the two
special cases. effective addressing and true BRK. If
neither is found, the instruction is assumed to be three
bytes in length.

Lines 78-101 handle effective addressing. You'll need to
keep a close eye on the Y register to understand this
routine. Treating the operands of the two immediate­
mode instructions as an address. this routine subtracts
out the assembly-time address ofthe BRK routine, then
adds in the run-time address of the BRK handler as
stored in the BRK vector. The result is stored back into
the actual program code, and the routine exits through
line 104. No checking is done to ensure that there really
are two immediate-mode instructions present: the relo­
cator assumes you know what you're doing.

Line 105 handles a true BRK (two BRK instructions in
a row) by JMPing to $FA59, the Monitor ROM's default
BRK handler. This ROM routine displays the registers
and program counter and drops into the Monitor.

The handler for the three-byte instructions (lines 109-
126) works in essentially the same way as the effective
addressing handler at lines 78-101. The Y register is
incremented and decremented to point at slightly differ­
ent bytes, but the function is the same. Once again no
opcode checking is done: it's up to you to make sure you
include a three byte instruction after a BRK.

The exit routine, used by both the effective address
handler and the absolute address handler. is at line
128. This short routine stores a NOP over the BRK
instruction which called the relocator. restores all reg­
isters with a call to $FF3F, and JMPs back into the main
program. Notice that the BRK handler (line 81) does
NaT unpatch the BRK. If it did. the two BRKs (which
mean a true BRK) would turn into one BRK, which, on
subsequent executions, would cause the next instruc­
tion to be adjusted!

CONCLUSION

The run-time relocator is a slick way to write code that
can be instantly run at any location without having to

mess around with adjusting it. It's easy to use, and
flexible too.

Naturally, it's not perfect. If you move the program to
another memory location after it's been executed once,
it won't work because all the BRKs have been patched
out. Your code does end up slightly larger because of
the BRK interpreter and the needed BRKs. You have to
be careful if you're fond of self-modifying code because
the BRK handler does some modifying of its own. If the
user presses Reset. an instruction may wind up half­
relocated. Et cetera.

It is, however, very well suited to programs that will be
loaded into memory at an arbitrary address, executed
once, and then abandoned, such as short
BASIC.SYSTEM utility programs. Besides which, run­
time relocation is a neat thing you can do with your
Apple, and it's fun and instructive to boot. Isn't that
enough of a reason to play around with it?

Hired Guns
8 I 16 is providing a free service to all programmers (who
are subscribers!): placement of a complimentary "situ­
ation wanted" ad. If you're available for hire and looking
for a programming job (from full-time to freelance). a
listing in this directory is your ticket to work. The ads
are open to both 8 and 16 bit authors and are limited to
120 words or less. Be sure to give your address. phone
number, and email addresses, and specify how much of
a job you're after (part-time? full-time? royalty-based?
etc). Send it to Situation Wanted, c/o Ariel Publishing,
Box 398, Pateros, WA 98846

David Ely. 4567 W. 159th St. Lawndale, CA 90260. 213-371-4350
eves. or leave message. GEnie: [DDEL Y]. AOL: "DaveEiy". Expe­
rienced in 8 and 16 bit assembly, C, Forth and BASIC. Available for
hourly or flat fee contract work on all Apple II platforms (llgs
preferred). Have experience in writing desktop and classical applica­
tions in 8 or 16 bit environments, hardware and firmware interfacing,
patching and program maintenance. Will work individually or as a
part if a group.

Jeff Holcomb, 18250 Marsh Ln. #515, Dallas, Tx 75287. (214) 306-
0710, leave message. GEnie: [Applied.Eng], AOL: "AE Jeff". I am

looking for part-time work in my spare time. I prefer 16-bit programs
but I am familiar with 8-bit. Strengths are GS/OS, desktop applica­
tions, and sound programming. I have also worked with hardware/
firmware, desk accessories, CDevs, and inits.

Tom Hoover, Rt 1 Box 362, Lorena, TX, 76655, 817-752-9731
(day), 817-666-7605 (night). GEnie: Tom-Hoover; AOL: THoover;
Pro-Beagle, Pro-APA, or Pro-Carolina: !hoover. Interests/strengths
are 8-bit utility programs, including TimeOut(tm) applications, written
in assembly language. Looking for "part-time" work only, to be done
in my spare time.

Jay Jennings, 14-9125 Robinson #2A, Overland Park, KS, 66212.
(913) 642-53961ate evenings or early mornings. GEnie : [A2.JAY] or
[PUNKWARE]. Apple llgs assembly language programmer. Looking
for short term projects, typically 2-4 weeks. Could be convinced to do
longer projects in some cases. Familiar with console, modem, and
network programming , desk accessories, programming utilities,
data bases, etc. GS/OS only. No DOS 3.3 and no 8-bit (unless the
money is extremely good and there's a company car involved).

Jim Lazar, 1109 Niesen Road, Port Washington, WI 5307 4, 414-
284-4838 nights, 414-781-6700 days. AOL: "WinkieJim", GEnie:
[WINKIEJIM]. Strengths include: GS/OS and ProDOS 8 work, desk

top applications, CDAs, NDAs, INITs. Prefer working in 6502 or
65816 Assembly. Have experience with large and small programs,
utilities, games, disk copy routines and writing documentation.
Nibble, inCider and Caii-A.P.P.L.E. have published my work. Prefer
16-bit, but will do 8-bit work. Type of work depends on the situation,
would consider full-time for career move/benefits, otherwise 25 hrs/
month (flexible).

Stephen P. Lepisto, 12907 Strathern St., N. Hollywood, CA 91605,
818-503-2939. GEnie: S.LEPISTO. Available for full-time and part­
time contract work (flat rate or royalties). Experienced in 6502 to
65816 assembly, BASIC and C. Can work in these or quickly learn
new languages and hardware (some experience with UNIX, MS­
DOS, 8086 assembly) . Experience in games, utilities, educational,
applications. Lots of experience in porting programs to Apples.
Programmed Hacker II (64k Apple II), Labyrinth (128k Apple),
Firepower GS and others. Can also write technical articles.

Chris McKinsey, 3401 Alder Drive, Tacoma, WA, 98439,206-588-
7985, GEnie: C.MCKINSEY. Experience in programming 16-bit
(65c816) games. Strengths include complex super hi-res animation,
sound work (digitized and sequenced), and firmware . Looking for
new llgs game to develop or the porting of games from other
computers to the llgs.

We'll be running those folks with last names starting with M-Z next month!

w E WANT YOUR BEST!
S o you've written a great piece of Apple II or Apple lies software,

but you're not sure how to turn all that hard work into hard cash.
You're wary of shareware and you've been snubbed by other

publishers.

L et us take a look at your work! We are the publishers of Softdisk
and Softdisk G-S, monthly collections of software sold by
subscription, and we're looking for top-notch Apple II and Apple

IIGS software. We respond promptly, pay well, and are actually fun to
work with!

To submit your software for possible publication, send in your best to:

SOFTDISK PUBLISHING, INC.
606 Common St.

Shreveport, LA 71101
ATIN: Apple Submissions

Here's a short list of
what will put a gleam in
our eyes (and money in
your pocket)! For more
details, con tact Jay
Wilbur at (318) 221-
5134.

Teacher Utilities
Gradebook
Test Maker/Scorer
Attendance Keeper
Award Maker

Educational Lessons
Geometry
Math
Physics
Science

Resume Maker
Graphical Music Maker
Recipe Card Filer
Magazine Indexer
A ppleWorks DB Reader
ArtClipperDA
Paint Program
Cartoon Construction Kit
Fonts
Clip Art
Desk Accessories

The Sensational Lasers
Apple lle/llc Compatible

$375 Includes 10 free
software programs!

The Laser 128.._i{l features ful i Apple;]~ II compatibility with an internal disk drive. senal. paral lel. modem. and
mouse ports. When you 're ready to exp~nd your system. there·s an external drive port and expansion slot. The
Laser 128 even tncludes 10 free software packages ' Take advantage of thts excepttonal value today $375

Super High Speed Option!

only $425
The LASER 128EX has all the features of the
LASER 128, plus a triple speed processor and
memory expansion to 1MB $425.00

The LASER 128EX/2 has all the features of the
LASER 128EX. plus MIDI, Clock and Daisy
Chain Drive Controller $465.00

DISK DRIVES
• 5.25 LASER/ Apple 11 c $ 99.00
• 5.25 Apple 11 e $ 99.00
• 3.50 Apple BOOK ~ $179.00
• 5.25 LASER Daisy Chain . .. ~ $109.00
• 3.50 LASER Daisy Chain ... f1I!.I!j9 $179.00

U.S.A. MICRO
~ ~ 2888 Bluff Street. Suite 257 • Boulder. CO. 80301
~_, Add 3% Shipping· Colorado Residents Add 3% Tax

Your satisfaction is our guarantee!

Save Money by Buying
a Complete Package!

THE STAR a LASER 128 Computer with 12"
Monochrome Monitor and the LASER 145E
Printer $645.00

THE SUPERSTAR a LASER 128 Computer with
14" RGB Color Monitor and the LASER 145E
Printer $825.00

ACCESSORIES
• 12" Monochrome Monitor $ 89.00
• 14" RGB Color Monitor $249.00
• LASER 190E Printer $219.00
• LASER 145E Printer f1I!.I!f9 $189.00
• Mouse $ 59.00
• Joystick (3) Button $ 29.00
• 1200/2400 Baud Modem Auto $149.00

YOUR DIRECT SOURCE FOR APPLE
AND IBM COMPATIBLE COMPUTERS

J Phone Orders: 1-800-654-5426
8 - 5 Mountain Time • No Surcharge on Visa or MasterCard Orders!

Customer Serv1ce 1 800 537-8596 ·In Colorado (303\ 938-9089

http://apple2scans.net

	8/16 - Welcome to our birth!
	Editorial - Ross W. Lambert
	The Merlin Maniac: Filtering Out the Riff Raff - Steve Stephenson

	Insecticide

	The Weekend Hardware Hacker: Galvanic Skin Response: Getting a Jolt From Your Joystick - David Gauger II

	A TransWarp GS CDEV - Herb Hrowal

	ZBasic Tricks: Squirreling Data Into Auxmem (& Elsewhere) - Ross W. Lambert

	IIGS Animation: The Illusion of Motion - Steven Lepisto

	Our Very Own Stuff

	Them's the BRKs: Relocation in 8 bit assembly - Jerry Kindall

